

_	Discipline:	Mathématiques
Examen d'admission	Date:	1er juin 2021
	Lieu:	HEPIA, Genève
	Nombre de pages :	7
	Moyen auxiliaire autorisé :	calculatrice non-programmable
Informations Candidat-e	Nom:	
	Prénom:	
	Date de naissance :	
	Filière choisie :	
	Lieu de formation choisi :	
		_
Reservé Correcteur	Note obtenue :	
	Note obtenue:	
	Remarques:	
	Nom du correcteur :	
	Date :	
	Signature:	

Toutes les réponses doivent être justifiées mathématiquement!

Formulaire

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$(a - b)' = a' - 2ab + b'$$

 $(a + b)(a - b) = a^2 - b^2$

$$(a+b)(a^2 - ab + b^2) = a^3 + b^3$$

$$(a-b)(a^2 + ab + b^2) = a^3 - b^3$$

Résolution de l'équation $ax^2 + bx + c = 0$: $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sommet de la parabole d'équation $y = ax^2 + bx + c$: $S\left(-\frac{b}{2a}; -\frac{b^2 - 4ac}{4a}\right)$

$$S\left(-\frac{b}{2a}; -\frac{b^2 - 4ac}{4a}\right)$$

Exercice 1 [5 points] Questions à choix multiple. Cocher <u>la seule</u> bonne réponse.

- a) Quel est l'intervalle correspondant aux valeurs de x satisfaisant $1 \le x < 5$?
 - \square [1; 5]
- \square [1; 5]
- $\square \]1;5]$
- $\square \]1;5[$
- $\Box]-\infty;5]$
- b) Soit x un nombre tel que x < -3 et $x \ge -8$. Dans quel ensemble se trouve x?

- \square [-8;-3] \square $]-3;-8] <math>\square$ [-8;-3[\square $]-\infty;-8] <math>\square$ \emptyset
- c) Soit x un nombre tel que x > 2 ou x < -2. Dans quel ensemble se trouve x?

- $\square \]-2;2[$ $\square \]2;+\infty[$ $\square \]-\infty;-2[$ $\square \]-\infty;-2[\cup]2;+\infty[$
- d) La parabole d'équation $y = 3 2x + 4x^2$ est :
 - \square convexe

 \square concave

- □ ni l'un ni l'autre
- e) Quelles sont les coordonnées du sommet de la parabole d'équation $y = 3x^2 + 6x 1$:
- \square S(-1;-4) \square S(1;4) \square S(-4;-1) \square S(-4;1) \square S(-2;2)

Exercice 2 [12 points] Développer, puis simplifier les expressions suivantes :

a)
$$(2t^4 + 2t^2)(t-1)(t^3 + 5t) =$$

b)
$$(4x - y^2)(16x^2 + 4xy^2 + y^4) =$$

c)
$$\frac{1 - \frac{1}{u}}{\frac{1}{1 - u}} - \frac{\frac{1}{u - 1}}{u} + \frac{u}{1 - \frac{1}{u}} =$$

Exercice 3 [6 points] Factoriser les expressions suivantes :

a)
$$42x^2 - 32x + 6 =$$

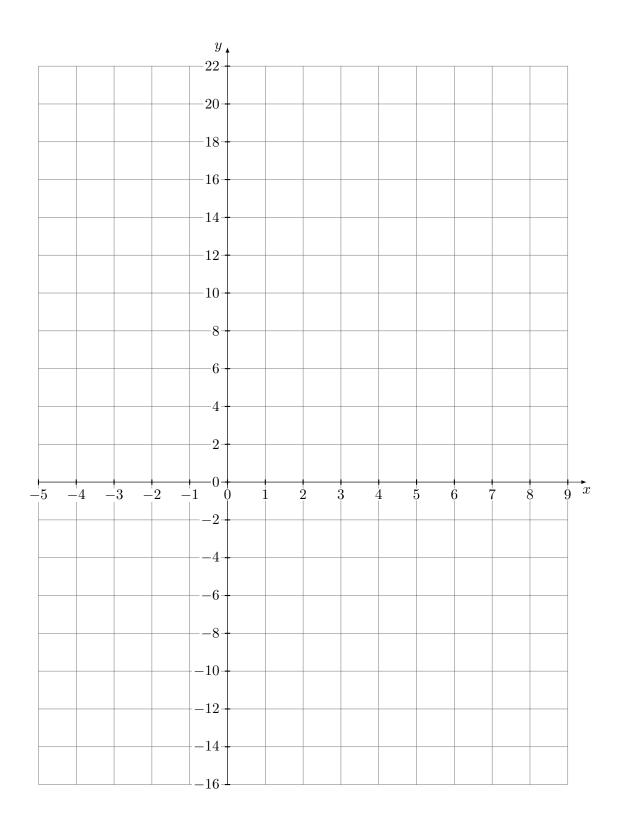
b)
$$20x^2 - 11x - 3 =$$

Exercice 4 [4 points] Déterminer, sans calculatrice, la valeur de l'expression suivante si $a = \frac{-1}{2}$ et $b = \frac{3}{2}$: $\frac{a - b + b^2}{(1 - a + b)^2} =$

Exercice 5 [4 points] Résoudre l'équation suivante $6x^2 = 5\sqrt{2}x - 2$

Exercice 6 [3 points] Résoudre l'inéquation suivante $\frac{x-2}{7} \le 4x+2$

Exercice 7 [5 points] Pierre dispose de CHF 20'000.- qu'il partage et place sur deux comptes, l'un rémunéré à 3% par an et l'autre à 4% par an. A la fin de l'année, la sommes des intérêts sur les deux comptes s'élève à CHF 740.-. Comment Pierre a-t-il réparti son argent sur chacun de ces deux comptes?


Exercice 8 [11 points] Soit la parabole d'équation $p: y = x^2 - 4x - 12$ et la droite d dont la pente vaut 2 et passant par le point A(0;4).

Les points d'intérêts peuvent être identifiés sur graphe, mais les calculs sont demandés.

- a) Tracer sur la page suivante le graphe de p et d.
- b) Déterminer les intersections de p avec l'axe ox (axe horizontal).

c) Déterminer l'intersections de p avec l'axe oy (axe vertical).

d) Déterminer les intersections de p avec d.

