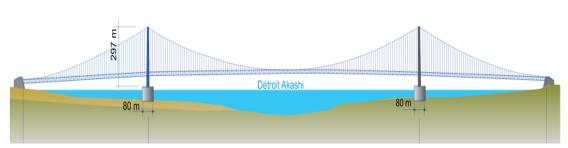

TB_SRM1 : Structure et résistance des matériaux 1

Chapitre 4. Traction – Compression

Centre Georges Pompidou, Paris, Piano - Rogers, 1977, structpedia.com

Objectif du chapitre

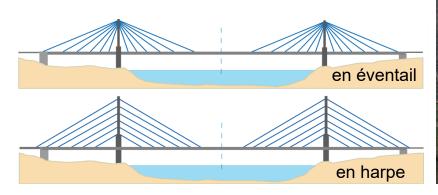
Dimensionner les éléments structurels linéaires sollicités en **traction** ou **compression**.


Plan du chapitre

- Introduction
- Relation contrainte et effort normal
- Essai de traction
- Critères de dimensionnement
- Lois de comportement

Exemples de structures sollicitées en traction

Câbles (torons pour haubans)


Pont suspendu

Pont du Golden Gate, San Francisco, 1917

Pont Est du Grand Belt, 1998

Pont à haubans

Viaduc de Millau, 2004

Pont de l'Alamillo, Séville, 1992

Exemples de structures sollicitées en traction

Spectrum building, Swindon, 1982

Stade Olympique de Munich, 1967

Exemples de structures sollicitées en compression

Colonnes

Musée Carré d'Art, 1993, Nîmes

La Maison Carrée, temple romain du le siècle, Nîmes

Introduction

Haute école du paysage, d'ingénierie et d'architecture de Genève

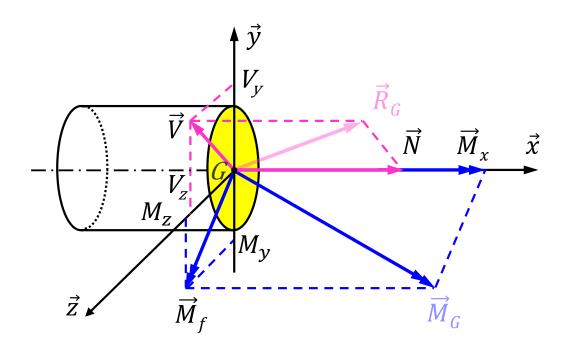
Exemples de structures sollicitées en traction / compression Treillis

Centre Georges Pompidou, Paris, 1977

Hotel Arts, Barcelone, 1992

Académie de formation à Herne-Sodingen, 1992

Objectif du chapitre

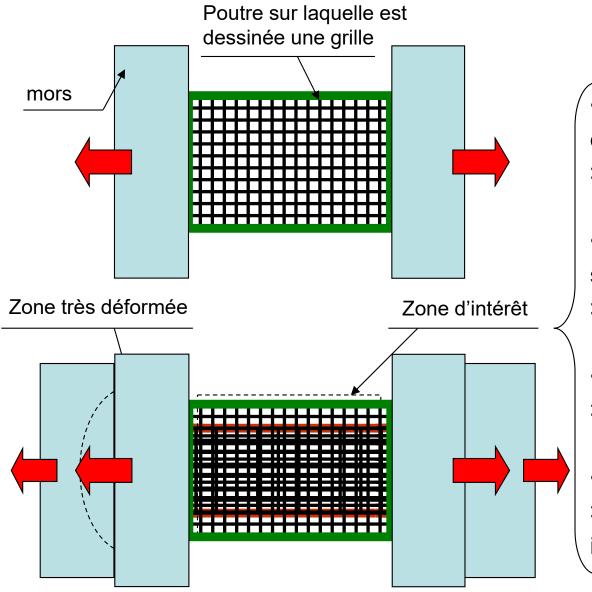

Dimensionner les éléments structurels linéaires sollicités en **traction** ou **compression**.

Plan du chapitre

- Introduction
- Relation contrainte et effort normal
- Essai de traction
- Critères de dimensionnement
- Lois de comportement

Efforts intérieurs en traction / compression

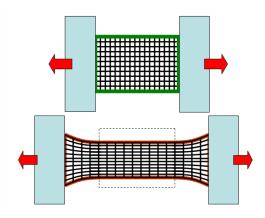
$$\vec{R}_G \begin{cases} N \neq 0 \\ V_y = 0 \\ V_z = 0 \end{cases}$$


$$\overrightarrow{M}_G \begin{cases} M_x = 0 \\ M_y = 0 \\ M_z = 0 \end{cases}$$

Convention sur le signe de N :

- si **N** est **positif**, la poutre (ou le tronçon) est sollicitée en **traction**.
- si **N** est **négatif**, la poutre (ou le tronçon) est sollicitée en **compression**.

Expérimentation en traction / compression Observations


- chaque carreau subit la même déformation
- > déformation homogène
- les lignes verticales (sections droites)
 se déplacent en restant verticales
- > mouvement global des sections
- les lignes verticales se raccourcissent
- > rétrécissement de la section
- les lignes horizontales s'allongent
- > allongement global de la longueur initiale

Expérimentation en traction / compression Analyse

Constats

- Déformation homogène et constante dans la zone d'intérêt
- Pas de glissement des sections droites les unes par rapport aux autres

Conséquences

- Etat de contrainte homogène et constant
- Contraintes tangentielles nulles

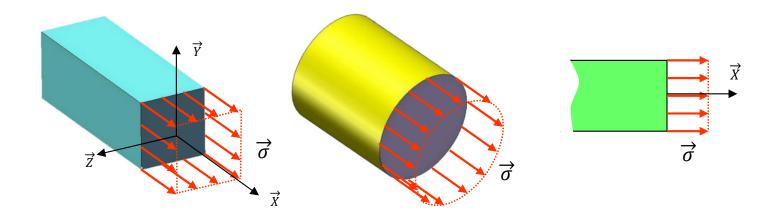
D'où le vecteur contrainte en tout point P d'une section S de normale $\vec{n} = \vec{x}$

$$\vec{\phi} (P, \vec{x}) = \sigma_{xx} \cdot \vec{x} = \sigma \cdot \vec{x}$$

avec σ_{xx} = σ = constante

Haute école du paysage, d'ingénierie

Expression de la contrainte normale



$$N = \iint \sigma_{xx} \cdot dA = \sigma_{xx} \cdot \iint dA = \sigma_{xx} \cdot A \qquad \longrightarrow \qquad \sigma_{xx} = \sigma = \frac{N}{A}$$

$$\sigma_{xx} = \sigma = \frac{N}{A}$$

Répartition des contraintes dans une section de l'éprouvette en traction.

Rappel

Contrainte : homogène et constante (dans la section), mais peut évoluer le long de \vec{x}

 $\sigma > 0 \Rightarrow$ traction; $\sigma < 0 \Rightarrow$ compression

Contraintes tangentielles nulles

On constate expérimentalement que l'allongement axial sous un effort de traction entraîne une réduction des dimensions transversales.

Déformation longitudinale

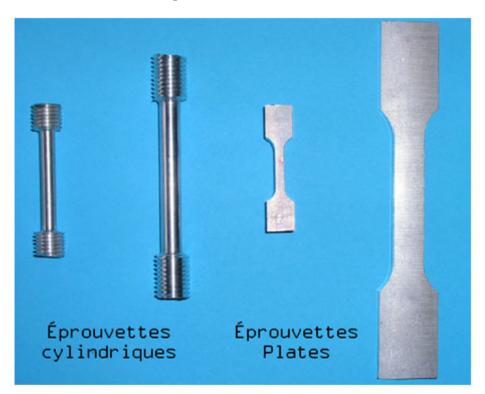
$$\varepsilon_L = \frac{\Delta L}{L_0} = \frac{L - L_0}{L_0}$$

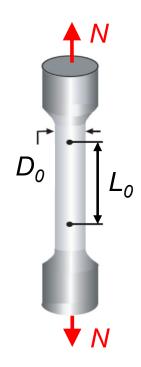
Déformation transversale

$$\varepsilon_T = \frac{\Delta D}{D_0} = \frac{D - D_0}{D_0}$$

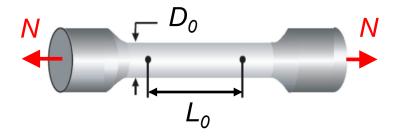
Objectif du chapitre

Dimensionner les éléments structurels linéaires sollicités en **traction** ou **compression**.


Plan du chapitre

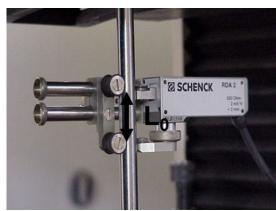

- Introduction
- Relation contrainte et effort normal
- Essai de traction
- Critères de dimensionnement
- Lois de comportement

Permet de déterminer les caractéristiques mécaniques d'un matériau (élastiques, plastiques et de ductilité) en quasi-statique.



- L_0 : longueur initiale (zone utile), qui servira à calculer l'allongement
- A_o : section initiale
- D₀: diamètre initial
- Éprouvette cylindrique en métal : $L_0 \approx 5 D_0$

Essai pratiqué à vitesse constante définie par les normes.

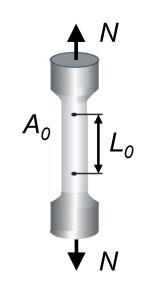

Avant l'essai, on mesure la longueur initiale L_0 ainsi que le diamètre initial D_0 de l'éprouvette circulaire.

- la force de traction appliquée N
- l'allongement △L

Essai de traction

Haute école du paysage, d'ingénierie et d'architecture de Genève

L'essai de traction sert à caractériser le comportement en traction d'un matériau.


Les résultats doivent être indépendants de la forme de l'éprouvette.

On ne peut donc pas exploiter directement la courbe $N = f(\Delta L)$

2 modifications

Pour se faire, on divise :

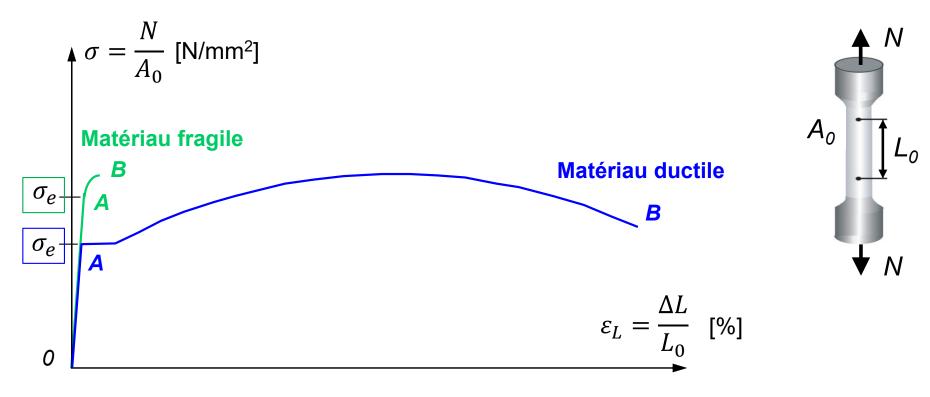
- la force N par l'aire initiale A_0 de la section droite
- l'allongement ΔL par la longueur initiale entre repère L_0

$$\sigma = \frac{N}{A_0}$$

 $\sigma = \frac{1}{A_0}$: Contrainte normale [N/mm²] ou [MPa]

$$\varepsilon_L = \frac{\Delta L}{L_0}$$

Déformation longitudinale


Loi de comportement :

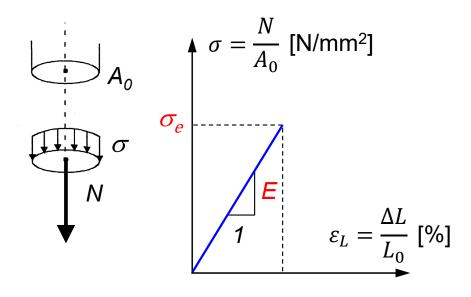
$$\sigma = f(\varepsilon_L)$$

Essai de traction

Haute école du paysage, d'ingénierie et d'architecture de Genève

Le diagramme $\sigma = f(\varepsilon_L)$ est généralement composé :

- d'une partie \emph{OA} élastique et linéaire : déformations réversibles et proportionnelles à σ
- d'une partie AB plastique : déformations irréversibles.


Comportements très différents suivant que le matériau soit ductile ou fragile

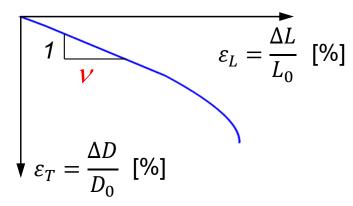
Haute école du paysage, d'ingénierie

Dans la zone élastique, la loi de proportionnalité entre la contrainte de traction $\sigma = N/A_0$ et la déformation longitudinale $\varepsilon_L = \Delta L/L_0$ est la loi de Hooke en traction :

$$\sigma = E \cdot \varepsilon_L$$

E est le module d'élasticité longitudinal ou module de Young du matériau (pente de la droite).

Il s'exprime en kN/mm² (ou GPa).


C'est une caractéristique du matériau.

La contrainte à la fin de la zone élastique est la **limite d'élasticité en traction** du matériau. Elle se note σ_e et s'exprime en N/mm² (ou MPa).

On peut aussi enregistrer le diagramme allongement longitudinal par rapport au rétrécissement transversal que l'on rend indépendant de la géométrie en divisant :

- l'allongement longitudinal ΔL par la longueur initiale L_o
- le rétrécissement transversale ΔD par le diamètre initial D_0 (éprouvette circulaire)

Dans la zone élastique, la loi de proportionnalité entre la déformation transversale ε_T et la déformation longitudinale ε_L est la **loi de Poisson** :

$$\varepsilon_T = -\nu \cdot \varepsilon_L$$

v est le coefficient de Poisson (sans unité). C'est une caractéristique du matériau.

Objectif du chapitre

Dimensionner les éléments structurels linéaires sollicités en **traction** ou **compression**.

Plan du chapitre

- Introduction
- Relation contrainte et effort normal
- Essai de traction
- Critères de dimensionnement
- Lois de comportement

Dimensionnement d'une barre / contraintes :

traduit le fait que le matériau reste dans la zone élastique.

$$s \cdot \sigma_{max} \le \sigma_{e}$$
 Avec **s** le coefficient de sécurité, **s** > 1

$$\sigma_{
m adm} = rac{\sigma_{
m e}}{
m S}$$
 On définit $\sigma_{
m adm}$ la contrainte limite à ne pas dépasser. $\sigma_{
m adm}$ est appelée la **contrainte limite admissible**.

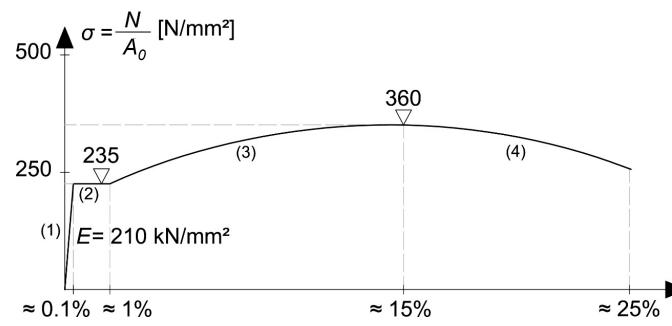
$$\sigma_{\max} \le \sigma_{\text{adm}} = \frac{\sigma_{\text{e}}}{s}$$

Dimensionnement d'une barre / déplacement :
 le déplacement maximum reste inférieur à une valeur donnée u_{lim}.

$$\Delta L_{\max} \le \frac{u_{lim}}{s}$$

Objectif du chapitre

Dimensionner les éléments structurels linéaires sollicités en **traction** ou **compression**.


Plan du chapitre

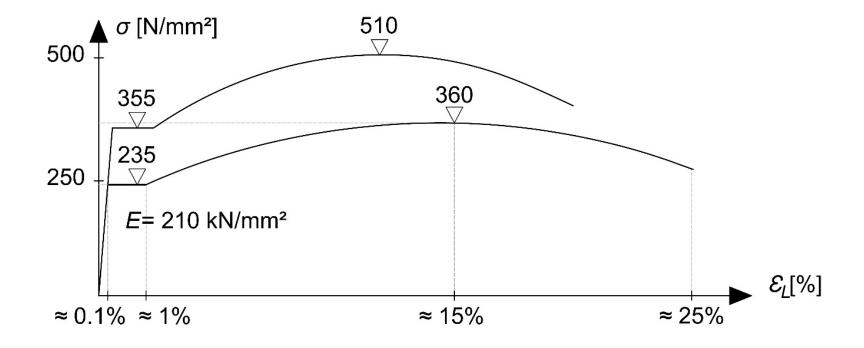
- Introduction
- Relation contrainte et effort normal
- Essai de traction
- Critères de dimensionnement
- Lois de comportement

Haute école du paysage, d'ingénierie et d'architecture de Genève

Acier de construction S 235

- (1) domaine élastique
- (2) palier d'écoulement
- (3) domaine d'écrouissage
- (4) domaine de la striction

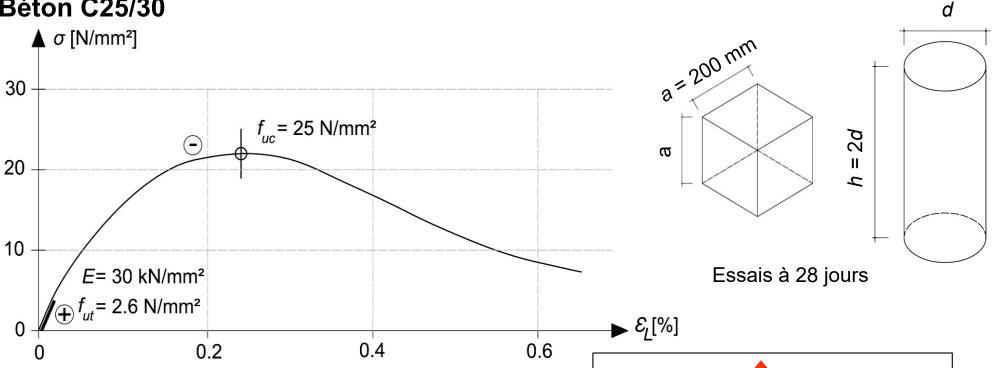
$$\mathcal{E}_{L} = \frac{\Delta L}{L_{o}} [\%]$$


compression = traction

 régularité des propriétés (faible dispersion)

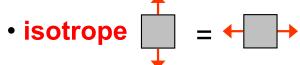
Haute école du paysage, d'ingénierie

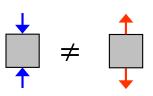
Aciers de construction S 235 et S355



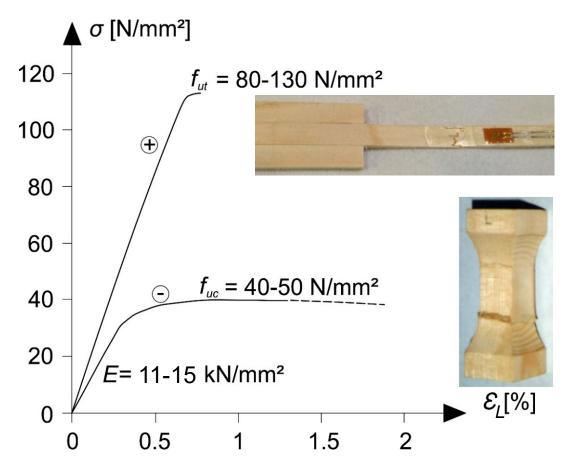
nuance d'acier	limite d'élasticité f _y [N/mm²]	résistance à la traction f_u [N/mm²]	allongement de rupture [%]	désignation ou utilisation
S 235	235	360	26	acier doux
S 355	355	510	22	acier à haute résistance

Haute école du paysage, d'ingénierie et d'architecture de Genève


Béton C25/30



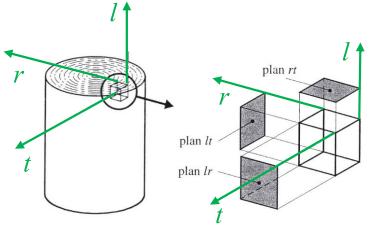
• compression ≠ traction

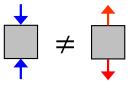


 régularité des propriétés (dispersion moyenne)

Hes·so// GENÈVE

Haute école du paysage, d'ingénierie et d'architecture de Genève

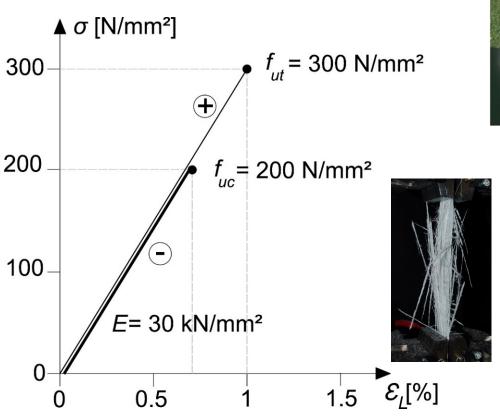

Bois


Traction et compression parallèle aux fibres

Comportement ⊥ aux fibres :

valeurs ⊥ aux fibres < 10% valeurs || aux fibres

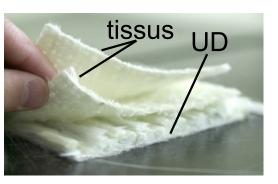
- - propriétés ∥ >> ⊥
- compression ≠ traction



 variabilité des propriétés (grande dispersion)

Haute école du paysage, d'ingénierie et d'architecture de Genève

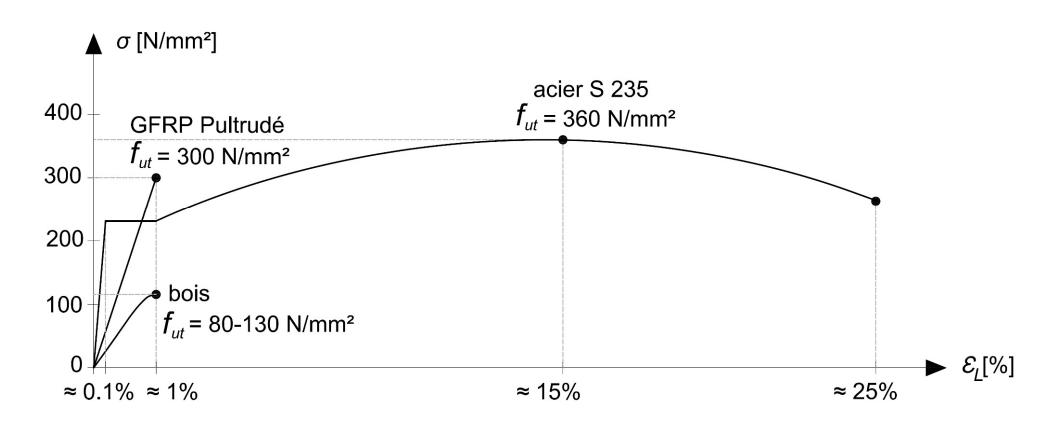
Matériau composite pultrudé GFRP



Comportement perpendiculaire aux fibres :

$$E_{\perp} = 3.5 \text{ kN/mm}^2 << E_{||} = 30 \text{ kN/mm}^2$$

 $f_{\mu \perp} = 10 \text{ N/mm}^2 << f_{\mu ||} = 300 \text{ N/mm}^2$


- anisotrope

 propriétés | >> ⊥
- compression = traction

 régularité des propriétés (faible dispersion)

Haute école du paysage, d'ingénierie et d'architecture de Genève

Traction parallèle aux fibres (bois, composite)