
School of Management | 1

Module 61-12: Option GIS-Python

Spatial models:

Working with geometries

School of Management

Bachelor of Science HES-SO (BSc) in Business
Information Technology

Jean-Paul Calbimonte

School of Management | 2

Representing spatial data

▪ Simplifications of the real world

▪ Represented with vector or raster data model

▪ Other models and extensions: spatio-temporal data model, topological data

model

H. Tenkanen, V Heikinheimo, D. Whipp. Python for Geographic Data Analysis https://pythongis.org/

https://pythongis.org/

School of Management | 3

Vector and Raster

H. Tenkanen, V Heikinheimo, D. Whipp. Python for Geographic Data Analysis https://pythongis.org/

https://pythongis.org/

School of Management | 4

Vector and Raster

School of Management | 5

Raster

▪ Data represented as arrays of cells (pixels)

▪ represent real-world objects, continuous phenomena

▪ Example: photographs using RGB colors

▪ Other information: e.g., elevation or temperature

School of Management | 6

Raster files

• GeoTIFF: open, non-proprietary raster data format based on TIFF.

• COG: Cloud Optimized GeoTIFF (COG) based on GeoTIFF.

• NetCDF: Network Common Data Form (NetCDF): portable, self-describing and scalable file format for storing

array-oriented multidimensional scientific data.

• ASCII Grid: The ASCII Raster File: simple format to transfer raster data between various applications.

• IMG: ERDAS Imagine file format (IMG): proprietary file format accompanied with an .xml metadata file

School of Management | 7

Vector

▪ Fundamental
geometric objects:
points, lines and areas.

▪ Defined in Simple Features
Access Specification (Herring,
2011)

▪ Standard (ISO 19125-1)
formalized by the Open
Geospatial Consortium

▪ Followed by most programming
languages

▪ Well-known text (WKT)
representation.

School of Management | 8

Vector formats

▪ Shapefile: introduced by ESRI. Multiple separate files:.shp for geometries, .shx for positional index, .dbf
for attribute information + others

▪ GeoJSON: open standard format extends JSON. Human readable & not compressed. TopoJSON variant.

▪ GeoPackage: (GPKG): open, non-proprietary, platform-independent, portable and standards-based data
format for storing spatial data uses a SQLite database.

▪ GML: Geography Markup Language: XML based data format defined by the Open Geospatial Consortium
(OGC) to express geographical features.

School of Management | 9

GeoJSON
{
"type": "FeatureCollection",
"features": [

{ "type": "Feature",
"properties": {"id": 75553155,

"timestamp": 1494181812},
"geometry": {

"type": "MultiLineString",
"coordinates": [[[26.938, 60.520], [26.938, 60.520]],

[[26.937, 60.521], [26.937, 60.521]],
[[26.937, 60.521], [26.936, 60.522]]]

}
},
{ "type": "Feature",

"properties": {"id": 424099695,
"timestamp": 1465572910},

"geometry": {
"type": "Polygon",
"coordinates": [[[26.935, 60.521], [26.935, 60.521], [26.935, 60.521], [26.935, 60.521], [26.935, 60.521]]]

}
}

]
}

School of Management | 10

Shapely library
set-theoretic analysis

manipulation of planar features
PostGIS type geometry operations out of RDBMS

• Point

• Curve

• Surface

Point

Types of objects Shapely classes

LineString
LinearRing

Polygon

• Collections

Python idioms

MultiPoint

MultiLineString

MultiPolygon

Disclaimer:
the following content is

simplified. Full details can
be found in the docs of

shapely:
https://shapely.readthedoc

s.io

Spatial Model

School of Management | 11

General attributes/methods

• object.area: Area (float) of the object.

• object.bounds: Tuple (float values) that bounds the object.

• object.length: Length (float) of the object.

• object.geom_type: String specifying the GeometryType

• object.distance(other): Minimum distance to the other object.

• object.hausdorff_distance(other): Hausdorff distance (float) to the other object.

• object.representative_point: Cheaply computed point guaranteed to be

within the geometric object.

Spatial Model

School of Management | 12

An object that represents a single point in space.
Points are: two-dimensional (x, y) or three dimensional (x, y, z).

Point(1.0,2.0)

from shapely.geometry import Point

point = Point(1.0, 2.0)

point.area

0.0

point.length

0.0

point.bounds

(1.0, 2.0, 1.0, 2.0)

Point Class

School of Management | 13

list(point.coords)

[(1.0, 2.0)]

point.x

1.0

point.y

2.0

p2=Point(point)

Point(1.0,2.0)

x y

Point Class

School of Management | 14

A Well Known Text (WKT) of any geometric object

shapely.wkt.dumps(ob)

Returns a WKT representation of ob.

shapely.wkt.loads(wkt)

Returns a geometric object from a WKT representation wkt.

Point(0, 0).wkt

'POINT (0.0000000000000000 0.0000000000000000)'

wkt = dumps(Point(0, 0))

print wkt

POINT (0.0000000000000000 0.0000000000000000)

loads(wkt).wkt

'POINT (0.0000000000000000 0.0000000000000000)'

WKT

School of Management | 15

LineString: an object that represents a sequence of points joined together to
form a line. Consists of a list of at least two coordinate tuples.

from shapely.geometry import LineString

line = LineString([(0, 0), (1, 1)])

line.area

0.0

line.length

1.4142135623730951

line.bounds

(0.0, 0.0, 1.0, 1.0)

Point(0.0,0.0)

Point(1.0,1.0)

LineString

School of Management | 16

len(line.coords)

2

list(line.coords)

[(0.0, 0.0), (1.0, 1.0)]

line2=LineString(line)

<shapely.geometry.linestring.LineString object at 0x...>

list(line2.coords)

[(0.0, 0.0), (1.0, 1.0)]

line3=LineString([Point(0.0, 1.0), (2.0, 3.0), Point(4.0, 4.0)])

<shapely.geometry.linestring.LineString object at 0x...>

line3.wkt

'LINESTRING (0 1, 2 3, 4 4)'

Point(0.0,1.0)

(2.0,3.0)

Point(4.0,4.0)

LineString

School of Management | 17

The LinearRing constructor takes an ordered sequence of point tuples.
The sequence may be explicitly closed by passing identical values in the first & last indices.

(0,0)

(1,1)

(1,0)

from shapely.geometry.polygon import LinearRing

ring = LinearRing([(0, 0), (1, 1), (1, 0)])

ring.area

0.0

ring.length

3.4142135623730949

ring.bounds

(0.0, 0.0, 1.0, 1.0)

len(ring.coords)

4

list(ring.coords)

[(0.0, 0.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]

LinearRing

School of Management | 18

A Polygon object represents a filled area that consists of a list of at least three
coordinate tuples that forms the outerior ring and a (possible) list of hole polygons.

from shapely.geometry import Polygon

polygon = Polygon([(0, 0), (1, 1), (1, 0)])

polygon.area

0.5

polygon.length

3.4142135623730949

polygon.bounds

(0.0, 0.0, 1.0, 1.0)

list(polygon.exterior.coords)

[(0.0, 0.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]

list(polygon.interiors)

[]

(0,0)

(1,1)

(1,0)

Polygon

School of Management | 19

The Polygon constructor also accepts instances of LineString and
LinearRing.

coords = [(1, 1), (2, 2), (2, 1)]

r = LinearRing(coords)

s =Polygon(r)

s.area

0.5

ext=[(0,0),(0,3),(4,4),(3,0)]

t = Polygon(ext, [r])

t.area

6.5507620529190334

(1,1)

(2,2)

(2,1)

(0,0)

(0,3)

(4,4)

(3,0)

Polygon

School of Management | 20

Rectangular polygons occur commonly, and can be conveniently constructed using the
shapely.geometry.box()

from shapely.geometry import box

b = box(0.0, 0.0, 1.0, 1.0)

b

<shapely.geometry.polygon.Polygon object at 0x...>

list(b.exterior.coords)

[(1.0, 0.0), (1.0, 1.0), (0.0, 1.0), (0.0, 0.0), (1.0, 0.0)]

(0,0)

(1,1)

Polygon

School of Management | 21

Heterogeneous collections of geometric objects may result from some Shapely
operations. For example, two LineStrings may intersect along a line and at a point.

a = LineString([(0, 0), (1, 1), (1,2), (2,2)])

b = LineString([(0, 0), (1, 1), (2,1), (2,2)])

x = a.intersection(b)

x

<shapely.geometry.collection.GeometryCollection object at 0x...>

x.wkt

'GEOMETRYCOLLECTION (POINT (2 2), LINESTRING (0 0, 1 1))'

list(x)

[<shapely.geometry.point.Point at 0x107fdc470>,

<shapely.geometry.linestring.LineString at 0x107fdc588>]

(0,0)

(1,1)

(1,2)

(2,1)

(2,2)

Collections

School of Management | 22

A MultiPoint object represents a collection of points and consists of a list of coordinate-
tuples

from shapely.geometry import MultiPoint

points = MultiPoint([(0.0, 0.0), (1.0, 1.0)])

points.area

0.0

points.length

0.0

points.geoms

<shapely.geometry.base.GeometrySequence at 0x115e37ac8>

list(points.geoms)

[<shapely.geometry.point.Point at 0x115e93048>,

<shapely.geometry.point.Point at 0x115e93080>]

MultiPoint([Point(0, 0), Point(1, 1)])

(0,0)

(1,1)

MultiPoint

School of Management | 23

MultiLineString -object represents a collection of lines and consists of a list of line-like
sequences

from shapely.geometry import MultiLineString

coords = [((0, 0), (1, 1)), ((-1, 0), (1, 0))]

lines = MultiLineString(coords)

lines.area

0.0

lines.length

3.4142135623730949

len(lines.geoms)

2

MultiLineString(lines)

<shapely.geometry.multilinestring.MultiLineString

object at 0x...>

(-1,0) (0,0) (1,0)

(1,1)

MultiLineString

School of Management | 24

It takes a sequence of exterior ring and hole list tuples: [((a1, …, aM), [(b1, …, bN), …]), …].
Otherwise it accepts an unordered sequence of Polygon instances.

from shapely.geometry import

MultiPolygon

p1=Polygon([(0,0),(0,1),(1,0)])

p2=Polygon([(1,1),(2,0),(3,1),(2,2)])

polygons=MultiPolygon([p1,p2])

len(polygons.geoms)

2

len(polygons)

2

(0,0) (1,0) (2,0)

(0,1)

(3,1)

(2,2)

(1,1)

MultiPolygon

School of Management | 25

object.has_z: True if the feature has not only x and y, but also z coordinates

object.is_ccw: True if coordinates are in counter-clockwise order

object.is_empty: True if the feature’s interior and boundary coincide with the empty set.

(0,0)

(1,1)

(1,0) (0,0)

(1,1)

(1,0)

Point(0, 0).has_z

False

Point(0, 0, 0).has_z

True

LinearRing([(1,0), (1,1), (0,0)]).is_ccw

True

LinearRing([(0,0), (1,1), (1,0)]) .is_ccw

False

Point().is_empty

True

Point(0, 0).is_empty

False

Predicates

School of Management | 26

object.is_ring: True if the feature is closed.

object.is_simple: True if the feature does not cross itself.

object.is_valid: True if a feature is “valid”, e.g. a valid Polygon may not
possess any overlapping exterior or interior rings. A valid MultiPolygon may not collect
overlapping polygons

LineString([(0, 0), (1, 1), (1, -1)]).is_ring

False

LinearRing([(0, 0), (1, 1), (1, -1)]).is_ring

True

LineString([(0, 0), (1, 1), (1, -1), (0, 1)]).is_simple

False

MultiPolygon([Point(0, 0).buffer(2.0),

Point(1, 1).buffer(2.0)]).is_valid

False

Predicates

School of Management | 27

a = LineString([(0, 0), (1, 1)])

b = LineString([(0, 0), (0.5, 0.5), (1, 1)])

c = LineString([(0, 0), (0, 0), (1, 1)])

a.equals(b)

True

a == b

False

b.equals(c)

True

b == c

False

object.__eq__(other): True if the same geometric type, and coordinates match
precisely.
object.equals(other): True if the set-theoretic boundary, interior,
and exterior of the object coincide with those of the other.

(0,0)

(1,1)

(0,0) (0,0)

(1,1) (1,1)

(0.5,0.5)

(0,0)

Predicates

School of Management | 28

object.contains(other): True if no points of other lie in the exterior of
the object and at least one point of the interior of other lies in the interior of object.

(0,0)

(1,1)

(0.5,0.5)

coords = [(0, 0), (1, 1)]

LineString(coords).contains(Point(0.5, 0.5))

True

Point(0.5, 0.5).within(LineString(coords))

True

LineString(coords).contains(Point(1.0, 1.0))

False

A line’s endpoints are part of its boundary and are therefore not contained.

Predicates

School of Management | 29

object.crosses(other): True if the interior of the object intersects
the interior of the other but does not contain it.

object.disjoint(other): True if the boundary and interior of the object
do not intersect at all with those of the other.

(1,1)(0,1)

(1,0)

coords = [(0, 0), (1, 1)]

LineString(coords).crosses(LineString([(0, 1), (1, 0)]))

True

A line does not cross a point that it contains.
LineString(coords).crosses(Point(0.5, 0.5))

False

Point(0, 0).disjoint(Point(1, 1))

True

(0,0)

Spatial Operations

School of Management | 30

object.intersects(other): True if the boundary or interior of the object
intersect in any way with those of the other.

object.overlaps(other): True if the objects intersect but neither contains
the other.

object.touches(other): True if the objects have at least one point in common
and their interiors do not intersect with any part of the other. Overlapping features
do not therefore touch.

(0,0)

(1,1)

(2,0)

a = LineString([(0, 0), (1, 1)])

b = LineString([(1, 1), (2, 0)])

a.touches(b)

True

Spatial Operations

School of Management | 31

object.within(other): True if the
object’s boundary and interior intersect only with the interior of the other (not
its boundary or exterior).

(2,2)

(0,0)

(4,4)

(5,5)
a = Point(2, 2)

b = Polygon([[1, 1], [1, 3], [3, 3], [3, 1]])

c = Polygon([[0, 0], [0, 4], [4, 4], [4, 0]])

d = Point(5, 5)

a.within(c)

True

d.within(c)

False

b.within(c)

True

Spatial Operations

School of Management | 32

object.boundary: Returns a lower dimensional object representing the object’s
set-theoretic boundary.
The boundary of a polygon is a line, the boundary of a line is a collection of points.
The boundary of a point is an empty (null) collection.

coords = [((0, 0), (1, 1)), ((-1, 0), (1, 0))]

lines = MultiLineString(coords)

lines.boundary

<shapely.geometry.multipoint.MultiPoint object at 0x...>

lines.boundary.wkt

'MULTIPOINT (-1 0, 0 0, 1 0, 1 1)'

lines.boundary.boundary

<shapely.geometry.collection.GeometryCollection object at 0x...>

lines.boundary.boundary.is_empty

True

Spatial Operations

School of Management | 33

object.centroid: Returns a representation of the object’s geometric centroid (point).

object.difference(other): Returns a representation of the points making up this
geometric object that do not make up the other object.

(0,0)

(1,1)

(0.5,0.5)

LineString([(0, 0), (1, 1)]).centroid

<shapely.geometry.point.Point object at 0x...>

LineString([(0, 0), (1, 1)]).centroid.wkt

'POINT (0.5000000000000000 0.5000000000000000)'

a = Point(1, 1).buffer(1.5)

b = Point(2, 1).buffer(1.5)

a.difference(b)

<shapely.geometry.polygon.Polygon object at 0x...>

Spatial Operations

School of Management | 34

object.intersection(other): Returns a representation of the intersection
of this object with the other geometric object.

a = Point(1, 1).buffer(1.5)

b = Point(2, 1).buffer(1.5)

a.intersection(b)

<shapely.geometry.polygon.Polygon object at 0x...>

a = Point(1, 1).buffer(1.5)

b = Point(2, 1).buffer(1.5)

a.symmetric_difference(b)

<shapely.geometry.multipolygon.MultiPolygon object at ...>

object.symmetric_difference(other): Returns a representation of the
points in this object not in the other geometric object, and the points in the other
not in this geometric object.

Construction Operations

School of Management | 35

object.union(other): Returns a representation of the union of points from this object
and the other geometric object.
The type of object returned depends on the relationship between the operands. E.g. the union
of polygons will be a polygon or a multi-polygon if they intersect or not.

a = Point(1, 1).buffer(1.5)

b = Point(2, 1).buffer(1.5)

a.union(b)

<shapely.geometry.polygon.Polygon object at 0x...>

Construction Operations

School of Management | 36

object.convex_hull: Returns a representation of the smallest convex Polygon containing
all the points in the object unless the number of points in the object is less than three.

object.envelope: Returns a representation of the point or smallest rectangular polygon
(with sides parallel to the coordinate axes) that contains the object.

(1,1)

(1,-1)

(0,0)
(0.5,0)

Point(0, 0).convex_hull

<shapely.geometry.point.Point object at 0x...>

MultiPoint([(0, 0), (1, 1)]).convex_hull

<shapely.geometry.linestring.LineString object at 0x...>

MultiPoint([(0, 0), (0.5,0), (1, 1), (1, -1)]).convex_hull

<shapely.geometry.polygon.Polygon object at 0x...>

MultiPoint([(0, 0), (1, 1)]).envelope

<shapely.geometry.polygon.Polygon object at 0x...>

Construction Operations

School of Management | 37

shapely.affinity.rotate(geom, angle, origin='center', use_radians=

False): Returns a rotated geometry on a 2D plane.
The point of origin can be a keyword 'center' for the bounding box center (default), 'centroid' for
the geometry’s centroid, a Point object or a coordinate tuple (x0, y0).

from shapely import affinity

line = LineString([(1, 3), (1, 1), (4, 1)])

rotated_a = affinity.rotate(line, 90)

rotated_b = affinity.rotate(line, 90, origin='centroid')

Transformations

School of Management | 38

shapely.affinity.scale(geom, xfact=1.0, yfact=1.0, zfact=1.0, origin='center')

Returns a scaled geometry, scaled by factors along each dimension.

triangle = Polygon([(1, 1), (2, 3), (3, 1)])

triangle_a = affinity.scale(triangle, xfact=1.5, yfact=-1)

triangle_a.exterior.coords[:]

[(0.5, 3.0), (2.0, 1.0), (3.5, 3.0), (0.5, 3.0)]

triangle_b = affinity.scale(triangle, xfact=2, origin=(1,1))

triangle_b.exterior.coords[:]

[(1.0, 1.0), (3.0, 3.0), (5.0, 1.0), (1.0, 1.0)]

Transformations

School of Management | 39

School of Management
Route de la Plaine 2
3960 Sierre

Thank you for your attention.

hevs.ch/heg

hevs.ch/heg

http://www.hevs.ch/hets

	Slide 1: Module 61-12: Option GIS-Python
	Slide 2: Representing spatial data
	Slide 3: Vector and Raster
	Slide 4: Vector and Raster
	Slide 5: Raster
	Slide 6: Raster files
	Slide 7: Vector
	Slide 8: Vector formats
	Slide 9: GeoJSON
	Slide 10: Spatial Model
	Slide 11: Spatial Model
	Slide 12: Point Class
	Slide 13: Point Class
	Slide 14: WKT
	Slide 15: LineString
	Slide 16: LineString
	Slide 17: LinearRing
	Slide 18: Polygon
	Slide 19: Polygon
	Slide 20: Polygon
	Slide 21: Collections
	Slide 22: MultiPoint
	Slide 23: MultiLineString
	Slide 24: MultiPolygon
	Slide 25: Predicates
	Slide 26: Predicates
	Slide 27: Predicates
	Slide 28: Predicates
	Slide 29: Spatial Operations
	Slide 30: Spatial Operations
	Slide 31: Spatial Operations
	Slide 32: Spatial Operations
	Slide 33: Spatial Operations
	Slide 34: Construction Operations
	Slide 35: Construction Operations
	Slide 36: Construction Operations
	Slide 37: Transformations
	Slide 38: Transformations
	Slide 39

