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Urban heat island (UHI) effect

AOC

Heat island Basel

rural city
Town, City Heat island
intensity
Temperature difference between Biel, Fribourg 5 K
city and rural temperature = urban Basel, Bern 6 K
heat island intensity Zurich 7K

Wanner & Hertig, 1983
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Urban climate: introduction

An urban heat island is an urban area that is significantly warmer than its surrounding
rural areas.

The temperature difference usually is larger at night than during the day and is most
apparent when winds are weak.
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Measurement of the UHI during heat wave in Zurich, 2017
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Climate change
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Heat waves will be more frequent with higher amplitudes

The urban climate will change leading to higher cooling loads
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Urban climate and heat waves

= Heat waves are getting
more frequent,
with longer duration,
and higher intensity,
and effecting a larger area.

= Combined with also the urban heat island (UHI) effect

= Mitigation measures can reduce the additional heat stress during heat waves
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Future Cities and Future Climates Thermal Comfort Durability
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Shanghai, Pudong District, 1987

The Atlantic, August 2013



ETH:zirich

Shanghai, Pudong District, 2013
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AIM: Providing an outdoor and indoor built environment that is:

* healthy
e comfortable

taking into account existing and/or future
« economical
* energetic
* ecological

e climatic

constraints.

ETH:zirich
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Motivation

“People spend 90% of their time indoors”

- 10% is spent outdoors

- Outdoor environment influences the indoor environment

—> Cities are growing

—> Cities consume a lot of energy

—> Climate change will impact the urban climate

ETH:zirich
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Air temperature at 2 m height during heat wave in Zurich, 2017
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Air temperature during heat wave in Zurich, 2017

Air temperature map at 6 am 23/06/2017
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Necessity of a multi-scale approach

= Mesoscale

= City and surroundings (domain size: < 200 km)
» Meteorological models with urban parameterization

= Microscale
= Neighborhood (domain size: < 2 km)
= CFD models

= Microscale

= Local/ building (domain size: < 100 m)

= CFD models

gt

P

X . - 47 :~ff.
(Atmosphere 2020, 11
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= HAM models
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Overview

m Introduction

m Causes of UHI
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Heat transfer mechanisms

1. Conduction
In solid materials

2. Convection
Surface convection by wind and/or buoyancy (“stack effect”)

7
Lo L
Long-wave radiation from the sky K
Long-wave radiation between surfaces N VAVAVAVE <

3. Radiation
Short-wave radiation from the sun

ETH:zirich
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What are the causes of the UHI?

1) increased sensible heat storage due to the choice of materials
« Changed thermal properties

ke Y 0 Al B
_ = = .
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What are the causes of the UHI?
1) increased sensible heat storage due to the choice of materials

2) increased absorption of short-wave radiation
» reduced albedo (reflection coefficient) of urban surfaces
» larger surface area to heat up

ETH:zirich
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Changed thermal bulk and surface properties:
Albedo value

Various Urban Environment Albedos wnm._ﬁm
Tar & Gravel reli0-03
Highly Reflective ar & Grave o -
Roof 0.60 - 0.70  calared Paint White Paint 0.03-0.18

"

Corrugated Roof 0.15 - 0.35
0.10 - 0.15

Asphalt
0.05 - 0,20

0.50 - 0.90 TN

ETH:zirich
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Changed thermal bulk and surface properties:
Albedo value

T

© Twitter/LA Street Surfaces

N Pavement Type Albedo

Asphalt 0.05 = 0,10 (new)
010 = 0.15 {weathered)

& Gray portland cement concrete 0.35 - 0.40 (new)
020 = 0.30 {weathered)

White portland cement concrete 070 = 080 (new)
040 = 0.60 (weathered)
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What are the causes of the UHI?
1) increased sensible heat storage due to the choice of materials

2) increased absorption of short-wave radiation

3) decreased long-wave radiation loss to the sky
 lower sky view factor

 reduced cooling of “warm” buildings during night time by blocking
of radiation to the cold sky

sky view factor in cities

ETH:zirich
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What are the causes of the UHI?
1) increased sensible heat storage due to the choice of materials

2) increased absorption of short-wave radiation
3) decreased long-wave radiation loss to the sky
4) decreased convective heat transport

Reduced cooling of “warm” buildings due to wind shielding

reduction of convective heat and moisture transfer

\l/

/l\ —\

reduced convective heat losses due to wind-sheltering
reduced (cross) ventilation potential

ETH:zirich
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What are the causes of the UHI?
1) increased sensible heat storage due to the choice of materials

2) increased absorption of short-wave radiation
3) decreased long-wave radiation loss to the sky
4) decreased convective heat transport

5) decreased evapotranspiration

N I.ﬁl
—

reduced evapotranspiration (latent heat)

ETH:zirich
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What are the causes of the UHI?
1) increased sensible heat storage due to the choice of materials

2) increased absorption of short-wave radiation

3) decreased long-wave radiation loss to the sky

4) decreased convective heat transport

5) decreased evapotranspiration

6) increased anthropogenic heat production

7) increased absorption of long-wave radiation due to air pollution

anthropogenic heat release
transportation

industry

people

ETH:zirich
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Overview

m Introduction

m QOutdoor thermal comfort
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Evaluation of urban outdoor thermal comfort
Universal Thermal Climate Index (UTCI):

Equivalent ambient temperature of a reference environment providing
the same physiological responses of a reference environment

_ {025

« Air temperature R fp % Hair

« Mean radiant temperature mrt umre £,0

* Relative humidity

* Wind speed Surface temperatures Tz oo o

 Clothing of environment radiation

o ACt'V'ty radlatlng to the on person
person

UTCI = T, + Offset(T,, TmrT, Uwind, Pvapour)
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Evaluation of urban outdoor thermal comfort

Local Regulation

Central Nervous System Regulatio
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UTCI range (°C) Stress category

Very strong HS
Strong HS
Moderate HS

No thermal stress

Thermoregulatory system model, from Fiala et al. 2012, International Journal of Biometeorology
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Overview

m Introduction

m Countermeasures to UHI
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What are the possible counter measures for Urban Heat Island mitigation?

Purpose

Large Category

Small Category

Cool Surface

Use of Green

Maintenance of Green Land

Garden

Roof Greeninga‘Garden

Street Greening.l"l'rees

Use of Structural
Material

Water Permeable Material

Water Contained Material

High Albedo Painting

Ph-ntn-::atalyst

Use of Water Water Park/Waterfront
Water Sprinkler
Creation of Arcade
Shading Area Pergola
Promotion of City Block Ventilation Lane
Urban Ventilation Configuration Arrangement of Buildings
Building Minimization of Aspect Area

Cnnfiguratinn

Pilloti

Reduction of

Anthropogenic Heat

Energy-Saving

Energy-Saving Machinery

Transport Manegement

Energy-Saving Life Style

Heat Release
Treatment

Water Ct:n::ling Tower

Heat Sink (River, Sea, Ground)

R. Ooka et al. 2010

Seminar at Hong Kong Polytechnic University

(Photo: Andreas Rubin — ETH)
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Overview

m Introduction

m \Wind flow in urban environment
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Urban boundary layer

wind velocity profile

ETH:zirich

Urban Boundary Layer (UBL)
B R T e i
Roughness Sublaycr (RSL)
—---—-——-———--r=- K| — viK |
A
Urban Canopy Layer (UCL) Average Building Height
) b, A of the Urban Areas
\J Y v Podium Layer . Y
Ng E., 2011
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Wind flow around a building

Stand-alone building
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|

flow patterns around buidings also influence heat removal,

transport of pollutants, evaporation, moisture transport in air, etc.

Wind-

Defraeye et al.
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Turbulent shear layer at building edges

the high buildings force the wet air to rise
Air cools down at higher height and condenses into mist

& -

ETH:zirich
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Wind-flow patterns around buildings

recirculation

separation at on the roof
frontal corner reattachment
Stagnation
Stagnation flow over i flow over
point building building
_ - /A , shear
layer

% top view
* light sheet on the middle axis
s ____ N D I D
S
C
<
o
(<)
ko]
S
stagnation restored flow
. direction
Standing down down flow region
vortex flow vortices
canyon behind
vortex building
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Wind flow around buildings

What happens with multiple buildings?

Isothermal conditions

Wind speed [m/s]
0.0 2.0 4.0 6.0 8.0 10.0 12.0

e oo "
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Ventilation

Cooler air directed by the high-rise building towards street level

‘ ‘ Modified urban

“‘“ H “ morphology

Wind speed =5 m/s

Temperature difference
at 1.75 m height

E3
= 2.25

Modified
ventilation

=15

E 0.75
0

Allegrini et al. 2017 Urban Climate 37
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Local thermal hotspots
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Non-isothermal conditions 1 10H
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Experimental studies in wind tunnel

City quarter with heated walls

0.5

Ri =1.32
Larger Ri (Richardson number)

indicates the importance of
buoyancy

- Ratio of natural convection to
forced convection

(Tsalicoglou et al, 2018,
18th International Symposium on Flow Visualization (ISFV18)) 0 1 5

x/H [-]
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Local thermal hotspots

* Wind flow can affect temperature levels

ETH:zirich

Local hot spots

Temperaturedifference (°C)
0.25 05 0.75

- - |
]

o

(Allegrini and Carmeliet, 2017, Urban Climate)
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Overview

m Modeling and application examples
m Numerical modeling of microclimate
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Mesoscale simulations (e.g. COSMO, WRF)
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Wind-flow field on 29.07.2018 - 12
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Comparison of flow fields

Magnitude of wind velocity at 10 m above ground
01:00

magU
[m/s]

—3.0

ETH:zirich
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Typical output results / indices

Outdoor thermal comfort (e.g. UTCI, PET, Heat exposure index)
m Air velocity, temperature, humidity
m Surface temperature

Vegetation-related
m Transpiration rate
m Leaf temperature

Impacts of greenery, shading, building morphology, densification, etc.
m Geometrical changes
m Material changes

Variation of temperature and humidity within urban materials
m Evaporative cooling
m Related durability indices (e.g. mould risk, freeze-thaw)
m  Soil moisture content

ETH:zirich
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Coupled physical process in urban environment

vegetation

porous media

@ H hamFoam &
ﬁtor 99€ / transport of
€at and moisture @ U urbanMicroclimateFoam &
radiati
diation @ W windDrivenRainFoam &
* transpey https://gitlab.ethz.ch/openfoam-cbp/solvers/

CFD: Building-resolved turbulent air flow due to wind and buoyancy
HAM: Heat And Moisture storage and transport in porous materials
(building materials, pavements, solils, ...) including phase change:
evaporative cooling

RAD: Short- and long-wave radiation using view factor approach

VEG: Modeling of urban trees and green surfaces "


https://gitlab.ethz.ch/openfoam-cbp/solvers/

Overview

m Modeling and application examples

m Evaporative cooling

ETH:zirich
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Evaporation

« Phase change of liquid water to
water vapor requires energy =
latent heat L,

L, =2.5x 10 J/kg
« Energy required to evaporate 1 kg of water

« This energy is extracted from the surroundings

ETH:zirich
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Drying behavior of porous media

first drying phase second drying phase

——--

100%RH

surface relative humidity

drying rate

surface temperature
wet bulb

temperature

time

vapour = vapour

RH = 100% ﬁ

Drying front
m o

saturated unsaturated

il

ETH:zirich
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Drying behavior of porous media

drying front

First drying period

« governed by boundary
conditions

 high drying rate

Second drying period

« governed by water vapour
resistance factor

* low drying rate

ETH:zirich
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Dally variation of surface temperature
T (°C)

37.0
|

— 34.0
— 32.0
— 30.0
— 28.0
— 26.0
— 24.0
22.0
20.0
18.0

00:00

M facades 10.00 p,
O pavement ——— 10.00

o

!

N w A ()] o)}
o
[

4_->
wetting

(2 mm/h)

o O

Surface temperature [°C]

| L |

0 6 12 18 24 30 36 42 48 54 60 66 72
Time [h] (Kubilay et al., Sustainable Cities and Soc. 2019, 49, 101574) o1

—_
o
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Evaporative cooling at street surface with different pavement materials

Direct solar radiation on
street surface

concrete

O 60 I ' I T I B I I I T I

° wind wetting |
=0 > ~ (Lmm/h) |
! b " I

|

(Kubilay et al., Sustainable Cities and Soc.
2019, 49, 101574)
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Street canyon evaporative cooling at pavement with different materials

Wetting (1 mm/h)

ETH:zirich

brick A -----—--- brick B

soil concrete

\ll -

Diff. in surf. temp. [°C]
=
|

L
(&)
T

R
o
|

Change in street surface
temperature as a result of
wetting

Surface relative hum. [%]

12 18 24 30

« Surface relative humidity decreases
— Rate of evaporation decreases
— surface temperature increases

Time [h]

(Kubilay et al., Sustainable Cities and Soc. 2019, 49, 101574) 53
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Influence of wetting intensity (duration is kept the same)

Diff. in surf. temp. [°C]

Diff. in surf. temp. [°C]_

-10

15

-20

-10

-15

-20

— 1 mm/h — 2.5 mm/h — 5 mm/h

)

B direct sun
4—|—D

30

36 42 48 54 60 66 72
Time [h]

2"d drying phase starts earlier when wetting amount is lower
Afterwards slower rate of evaporation - temperature increases

(Kubilay et al., Sustainable Cities and Soc. 2019, 49, 101574)
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Watering cycle

Pavement 1

+ Pavement 2
Sidewalk
(C

o]

SS 0s 114 oy 13 o€ 74 174

21:00 00:00 03:00 06:00

15:00 18:00

12:00

Time

(Hendel et al., Urban Climate 2014, 10, 189-200)
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Air temperature [°C]

Relative humidity [%]

Influence of wetting on thermal comfort variables * Alr temperature
 Mean radiant temperature

* Relative humidity

ary * Wind speed

6 12 18 24 30 36 42 48
Time [h]

6 12 18 24 30 36 42 48
Time [h]

—  Wet

Wind speed [m/s]

0.5

12 18 24 30 36 42 48
Time [h]

12 18 24 30 36 42 48
Time [h]
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Resulting UTCI (Universal Thermal Climate Index)

ETH:zirich

UTClI forla person
— dry —— wet standing at the center
I I I I 2.O°CI I |
1.5°C |
1.3°C
1|2 1I8 2I4 3I0 3I6 4I2 48

Time [h]
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Heat wave mitigation: case study Munsterhof, Zirich

(Photo: Adrian Michael / CC BY-SA 3.0)

ETH:zirich
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Meteorological conditions — heat wave 2019 June
Air temperature at 10 m (from mesoscale COSMO simulations)

ETH:zirich

June 25th

N N W W
o o o o

Air temperature [oC]

=
(9]

2-layer porous
pavement

6 mm between
08:00-08:20

6-12

6-14 6-16

Artificial wetting

6-18

6-20

Date

6-22

6-24

Trees

-26 6-28 6-30 7-2

Field maple
- 10-12 m
LAD = 2 m?/m3

- Silver linden
25-30 m
LAD = 4 m¥m3
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Thermal comfort — Universal thermal climate index (UTCI)
Ref. Wet

UTCI [°C] .
200 31.0 33.0 350 37.0 390 41.0 (Kubllay et al., Atmosphere 2020,
\ 11(12), 1313)

14:00



Overview

m Modeling and application examples

m Impact of urban trees and high-rise buildings

ETH:zirich
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Impact of urban morphology and urban street trees
= Densification with high-rise buildings
» Wind sheltering & reduction in ventilation
»= Cooling by shading & transpiration

level: 53
e
2 7L Kloten /
fumisng o / KlotenHostrass
rilan i e o
® (oofkern) slcultbegq/ e
sa ] /
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Meteorological conditions during heat wave (July 29 — 31, 2018)

Meteorological conditions

40
O 351
2 301
a
£ 2 Microscale velocity magnitude at 2 m height
£ 207 without trees trees with LAD = 1 m2/m3
15 | | | | | |
00:00 1200 0000 12:00 00-00 12:00 Wind speed
5 [m/s]
4 5.0
22 4.0
D
" — 3.0
0 | . | . |
00:00 12:00 0000 12:00 00:00 12:00
E 20
LN 1.0
S w
'O .
= 0.0
S_

E | | | . |
00:00 12:00 00:00 12:00 00:00 12:00
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Wind dir.

Airtemp. T, [° C]

U]_o [mls]
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Meteorological conditions during heat wave (July 29 — 31, 2018)

Meteorological conditions

A
o

[&)]

Microscale velocity magnitude at 2 m height
without trees trees with LAD = 1 m?/m3

N W W
[6) B ]

Wind speed
[m/s]

N
o

—_
(&)

0:00 12:00 00:00 12:00 00:00 12:00

N W A 0o

-
!

0 . . | . |
00:00 12:00 0000 12:00 00:00 12:00
E

N_

W_

Day 3, UTC 13:40

S_

E | | | . |
00:00 12:00 00:00 12:00 00:00 12:00

65



Air temperature at street level

without trees

=1 m?/m3

Temp. diff with trees
LAD

Air temperature
[°C]

36.0
34.0
32.0

— 30.0
— 280
— 260
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UTCI [°C]
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Computational domain
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Case FR-Schonberg — Air temperature

Daily average air temperature

14:00 UTC (CEST 16:00) at 2 m height
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Case FR-Schonberg — UTCI

14:00 UTC (CEST 16:00) at 2 m height
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Measured air temperature in a courtyard

[ Prosopis | )
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7 \
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. \ / f+25m

e\

\ S
- -*?"—H =+0.5m

Ly — /)

Measurement
points

6 cases in two neighboring courtyards
- Exposed — bare ground and grass cover

- Trees — bare ground and grass cover
- Shading device — bare ground and grass cover

Shashua-Bar et al., 2009, Landscape and Urban Planning 92, 179-186
Shashua-Bar et al., 2011, International Journal of Climatology 31, 1498-1506
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Measured air temperature in a courtyard

air temperature [°C]
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(Shashua-Bar et al., 2009)

Higher air temperature measured in the courtyard when the mesh shading is used!
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Field Measurement and survey with shading device SAVE

- Provides shading
- Evaporative cooling through the wetted fabric on top of the “leaves”

- “Leaves” can be rotated/closed to enhance night-time cooling

- Measurements performed in August 2024 at ETH HOnggerberg

- In collaboration with University of Cambridge

Images courtesy of Haiwei Flora Li
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Field Measurement and survey with shading device SAVE

11:00 CET

Images courtesy of Haiwei Flora Li
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Field Measurement and survey with shading device SAVE

15:00 CET

Images courtesy of Haiwei Flora Li
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What are the possible counter measures for Urban Heat Island mitigation?

Purpose

Large Category

Small Category

Cool Surface

Use of Green

Maintenance of Green Land

Garden

Roof Greeninga‘Garden

Street Greening/Trees

Use of Structural
Material

Water Permeable Material

Water Contained Material

High Albedo Painting

F’h-:rtncatalyst

Use of Water

Water Park/Waterfront

Water Sprinkler

Cnnfiguratinn

Creation of Arcade
Shading Area Pergola

Promotion of City Block Ventilation Lane

Urban Ventilation Configuration Arrangement of Buildings
Building Minimization of Aspect Area

Pilloti

Reduction of
Anthropogenic Heat

Energy-Saving

Energy-Saving Machinery

Transport Manegement

Energy-Saving Life Style

Heat Release
Treatment

Water C::n::ling Tower

Heat Sink (River, Sea, Ground)

R. Ooka et al. 2010
Seminar at Hong Kong Polytechnic University

ETH:zirich
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Set of mitigation measures based on:
« Compatibility
« Costs

« Time to iImplement

Green roofs

‘ 2 Green walls
(GR) N WSS - (GW)

g o
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N Gy B Uk gg Thermally
& W, A efficient building Evaporative pavement  Constructed shade Urban forestry Indoor cooling
O (EB) (EP) (CS) (UF) (IC)
) éb/o g

Q

Zhao, Y. et al. 2023. Beating urban heat: Multimeasure-centric solution sets

% and a complementary framework for decision-making. Renewable and
Sustainable Energy Reviews
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Thank you for your attention
Questions?
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