
School of Management | 1

Geo Data analytics with
Python: Geopandas
Option GIS-Python

School of Management

Bachelor of Science HES-SO (BSc) in Business
Information Technology

Jean-Paul Calbimonte

School of Management | 2

• Make working with geospatial data in python easier.

• Combines the capabilities of pandas and shapely.

• Provides geospatial operations in pandas

• High-level interface to multiple geometries to shapely.

• Enables to easily do operations in python that would

otherwise require a spatial database such as PostGIS.

What is Geopandas? http://geopandas.org/

Geopandas

School of Management | 3

• GeoPandas implements two main data structures, a GeoSeries and a
GeoDataFrame.

• Subclasses of pandas Series and DataFrame, respectively.

• 3 basic classes of geometric objects (actually shapely objects):
• Points / Multi-Points
• Lines / Multi-Lines
• Polygons / Multi-Polygons

Geopandas data structures

School of Management | 4

• Implements nearly all of the attributes and methods of Shapely objects.
• When applied to a GeoSeries, they will apply elementwise to all geometries in the series.
• Binary operations can be applied between two GeoSeries
• Binary operations can also be applied to a single geometry.

• area: shape area
• bounds: tuple of max and min coordinates on each axis
• total_bounds: tuple of max and min coordinates on each axis for entire GeoSeries
• geom_type: type of geometry.
• is_valid: tests if coordinates make a shape that is reasonable geometric shape.

• distance(other): returns Series with minimum distance from each entry to other
• centroid: returns GeoSeries of centroids
• representative_point(): returns GeoSeries of points that are guaranteed to be within each geometry.
• to_crs(): change coordinate reference system.
• plot(): plot GeoSeries.

• geom_almost_equals(other): is shape almost the same as other
• contains(other): is shape contained within other
• intersects(other): does shape intersect other

GeoSeries

School of Management | 5

• Tabular data structure that contains a GeoSeries.
• Always has one GeoSeries column that holds a special status.
• This GeoSeries is referred to as the GeoDataFrame’s “geometry”.
• Spatial methods applied to a GeoDataFrame always act on the “geometry” column.
• The “geometry” column can be accessed through the geometry attribute

(gdf.geometry),
• Name of the geometry column can be found by typing gdf.geometry.name.
• A GeoDataFrame may also contain other columns with geometrical (shapely) objects,

but only one column can be the active geometry at a time.
• To change which column is the active geometry column: set_geometry method.

GeoDataFrame

School of Management | 6

• Popular geospatial vector data format for geographic information systems (GIS)
• Developed and regulated by Esri
• (Mostly) open specification for data interoperability among Esri and other GIS
• Shapefile format can spatially describe vector features: points, lines, and polygons,
• Each item usually has attributes that describe it.

• .shp — shape format; the feature geometry itself

• .shx — shape index format; a positional index of the geometry to allow seeking forwards and backwards quickly

• .dbf — attribute format; columnar attributes for each shape,

• .prj — projection description, using a WKT of the CRS

• .sbn and .sbx — a spatial index of the features

• .fbn and .fbx — a spatial index of the features that are read-only

• .ain and .aih — an attribute index of the active fields in a table

• .ixs — a geocoding index for read-write datasets

• .mxs — a geocoding index for read-write datasets (ODB format)

• .atx — an attribute index for the .dbf file in the form of shapefile.columnname.atx

• .shp.xml — geospatial metadata in XML format

• .cpg — used to specify the code page (only for .dbf) for identifying the character encoding to be used

• .qix — an alternative quadtree spatial index used by MapServer and GDAL/OGR software

https://www.swisstopo.admin.ch/en/geodata/landscape/boundaries3d.html#links

Shapefile

https://www.swisstopo.admin.ch/en/geodata/landscape/boundaries3d.html#links

School of Management | 7

Load shapefile as a Table with spatial objects in it

https://map.geo.admin.ch/ Lots of official Swiss maps

swissBOUNDARIES3D:

Swiss limits

http://data.geo.admin.ch/ch.swisstopo.swissboundaries3d-kanton-flaeche.fill/data.zip

Loading Shapefiles

School of Management | 8

Lots of files inside the shapefile zip:

5 different layers:
borders (multi lines)

canton polygons

districts polygons

municipality polygons

country polygons

Loading Shapefiles

School of Management | 9

import geopandas as gpd

fp="../data/cantons/swissBOUNDARIES3D_1_3_TLM_KANTONSGEBIET.shp"

data = gpd.read_file(fp)

type(data)

geopandas.geodataframe.GeoDataFrame

data.plot()

<matplotlib.axes._subplots.AxesSu

bplot at 0x117deadd0>

matplotlib inline

data.plot()

Reading files & plot

School of Management | 10

data[2:5]

data.head(1)

Exploring GeoDataFrame

School of Management | 11

print(data['geometry'].head(1).exterior)

0 LINEARRING Z (709776.0697413046 185645.9507235...dtype: object

data['geometry'].head(1).area

0 7.105217e+09dtype: float64

Geometry basic operations

School of Management | 12

selection=data.loc[data['NAME']=='Vaud']

selection

Data Selection

School of Management | 13

for idx,row in selection.iterrows():

 area=row['geometry'].area

 print("The geometry area at {0} is {1}".format(idx,area))

The geometry area at 3 is 3118536618.9

The geometry area at 26 is 93463290.3216

Iterating over GeoDataFrame

School of Management | 14

selection=data.loc[data['NAME']=='Vaud']

selection.plot()

Data filtering

School of Management | 15

zugAndFribourg=data.loc[(data['NAME']=='Zug')

 |(data['NAME']=='Fribourg')]

zugAndFribourg.plot()

Data filtering

School of Management | 16

for idx,row in zugAndFribourg.iterrows():

 dist=row['geometry'].distance(data.loc[6]['geometry'])

 print("distance from {0} to {1} is {2}"

 .format(data.loc[8]['NAME'],row['NAME'],dist))

distance from Luzern to Fribourg is 89285.8176542

distance from Luzern to Zug is 0.0

distance from Luzern to Fribourg is 120366.375973

distance from Luzern to Fribourg is 128313.159856

distance from Luzern to Fribourg is 135083.448233

distance from Luzern to Fribourg is 95400.1243037

distance from Luzern to Fribourg is 118589.427963

Iterating and spatial operations

School of Management | 17

for idx,row in zugAndFribourg.iterrows():

 dist=row['geometry’].centroid.distance(data.loc[6]['geometry’].centroid)

 print("distance from {0} to {1} is {2}"

 .format(data.loc[8]['NAME'],row['NAME'],dist))

distance from Luzern to Fribourg is 141967.4230203907

distance from Luzern to Zug is 29767.045955095706

distance from Luzern to Fribourg is 151613.55850258234

distance from Luzern to Fribourg is 156247.23860257282

distance from Luzern to Fribourg is 161859.94375018188

distance from Luzern to Fribourg is 120833.9616898067

distance from Luzern to Fribourg is 143423.81018197164

Iterating and spatial operations

School of Management | 18

newData=gpd.GeoDataFrame()

newData['geometry']=None

data['center']=None

for idx,row in data.iterrows():

 center=row['geometry'].centroid

 data.loc[idx,'center']=center

df=gpd.GeoDataFrame(data['center'])

conversion={'center':'geometry'}

df.rename(columns=conversion)

Creating new GeoDataFrame

School of Management | 19

df.crs=data.crs

df.crs

{u'ellps': u'bessel', u'k_0': 1, u'lat_0': 46.95240555555556,

u'lon_0': 7.439583333333333, u'no_defs': True, u'proj': u'somerc',

u'units': u'm', u'x_0': 600000, u'y_0': 200000}

df=df.set_geometry('center')

df.plot()

Setting geometry GeoSeries

School of Management | 20

df.to_file('swissCenters.shp')

Writing shapefiles

School of Management | 21

School of Management

Route de la Plaine 2

3960 Sierre

Thank you for your attention.

hevs.ch/heg

hevs.ch/heg

http://www.hevs.ch/hets

	Slide 1: Geo Data analytics with Python: Geopandas
	Slide 2: Geopandas
	Slide 3: Geopandas data structures
	Slide 4: GeoSeries
	Slide 5: GeoDataFrame
	Slide 6: Shapefile
	Slide 7: Loading Shapefiles
	Slide 8: Loading Shapefiles
	Slide 9: Reading files & plot
	Slide 10: Exploring GeoDataFrame
	Slide 11: Geometry basic operations
	Slide 12: Data Selection
	Slide 13: Iterating over GeoDataFrame
	Slide 14: Data filtering
	Slide 15: Data filtering
	Slide 16: Iterating and spatial operations
	Slide 17: Iterating and spatial operations
	Slide 18: Creating new GeoDataFrame
	Slide 19: Setting geometry GeoSeries
	Slide 20: Writing shapefiles
	Slide 21

