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Question 1 Propriétés mécaniques des matériaux - procédé d'étirage

Vous devez former une barre cylindrique en acier de rayon r0 = 15mm et de longueur l0 = 750mm.

Le matériau en question sort d'un traitement de recuit. Il suit une loi de Ludwik en plasticité et ses

caractéristiques mécaniques sont partiellement connues:

limite élastique réelle module d'écrouissage coe�cient de Poisson

σe = 500MPa K = 3.2 GPa ν = 0.45

coe�cient d'écrouissage taux de déf. réel en rupture

n = 0.3 εult = 0.41

Table 1: Caractéristiques mécaniques du matériau considéré

(a) On vous demande de complèter les données mécaniques du matériau indiquées à la Tab. 1 en

calculant:

(1) Le taux de déformation réel εe et le module d'élasticité E

Solution

On a que

K = Eε1−ne . (1)

Or εe n'est pas connu. A la place on connaît σe = Eεe. On en tire que

εe =
σe
E

(2)

et (1) donne:

K = E
σe
E

1−n
= Enσ1−n

e .

Si on résoud pour E, on trouve que

En =
K

σ1−n
e

= σne
K

σe

soit en prenant la racine nème:

E = σe
n

√
K

σe
.

On peut alors remplacer par les valeurs numériques de n = 0.3, σe = 500MPa et

K = 3200MPa. Il vient

E ' 500× 0.3

√
3200

500
' 243352 MPa = 243.3 GPa (3)

On utilise en�n (2) pour calculer εe. Cela donne:

εe '
500

243352
' 0.00205. (4)

(2) La limite élastique (nominale) Re,
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Solution

La contrainte nominale Re s'obtient en combinant loi de Hooke (pour calculer la force)

et loi de Poisson pour calculer le rapport entre section courante et section initiale:

Re = σee
−2νεe ' 500× e−2×0.45×0.00205 ' 499MPa. (5)

(3) Le taux de déformation réel εm en résistance.

Solution

S'il est plus grand que εe = 0.00205 et plus petit que εult = 0.41, ce qui est le cas ici,

le coe�cient d'écrouissage n joue le rôle du taux de déformation réel εm en résistance

en tous les cas sous l'approximation de Considère:

εm = n = 0.3. (6)

(4) La résistance Rm,

Solution

Dans l'approximation de Considère, la résistance Rm se déduit du module d'écrouissage

par une formule du cours:

Rm = K
(n
e

)n
e(1−2ν)εe

soit avec les valeurs numériques:

Rm ' 3200×
(

0.3

2.718

)0.3

e(1−2×0.45)×0.00205 ' 1652.3MPa. (7)

(b) Vous e�ectuez une traction sur la barre mais vous ne pouvez pas dépasser le taux de déformation

réel εmax = 0.27 car, à ce moment-là, la machine atteint sa charge maximale Fmax. On vous

demande de calculer ls valeur de Fmax.

Solution

On peut déduire la charge en calculant la contrainte nominale Rmax mesurée au moment

où la machine se bloque et en multipliant le résultat par la section initiale S0. On a que

Rmax = Rm

(
xe1−x

)n
avec x =

εmax

n
.

Dans notre cas x = 0.27
0.3 = 0.9, Rm = 1652.3MPa et n = 0.3, donc

Rmax ' 1652.3×
(
0.9× e1.0−0.9

)0.3 ' 1649.6MPa.
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et comme

S0 = πr20 ' 3.14× 152 ' 706mm2, (8)

la conclusion est que

Fmax = RmaxS0 ' 1649.6× 706 ' 1166060N ' 1166 kN. (9)

soit environ 1.166MN, ce qui est une force importante.

(c) Pour ne pas endommager votre machine, vous relâchez la force à partir de la valeur Fmax et vous

sortez la barre. Calculez le taux de déformation permanent εp, la longueur lp, la section Sp, et le

volume Vp de la barre à sa sortie de machine.

Solution

1) Le taux de déformation permanent εp se déduit en appliquant l'équation de la déforma-

tion permanente:

εp = εr − εnr ε1−ne = 0.27− 0.270.3 × 0.002051−0.3 ' 0.261. (10)

2) La longueur lp se déduit directement de εp:

lp = l0e
εp ' 750× e0.261 ' 973.7mm, (11)

3) Pour calculer la section Sp, le plus simple est d'utiliser que les déformations permanentes

sont isochores: elles ne modi�ent pas le volume. Cela signi�e que

Splp = S0l0.

En résolvant pour Sp et en utilisant la valeur (8) de S0:

Sp =
S0l0
lp
' 706× 750

973.7
' 544.4mm2. (12)

Dans ce contexte on a que:

Vp = V0 = S0l0 ' 706× 750 = 530143mm3. (13)

Mais on peut aussi appliquer la théorie de Considère pour calculer le volume en relax-

ation Vr:

Vr = V0e
(1−2ν)εe ' 530143× e(1−2×0.45)×0.00205 ' 530252mm3. (14)

On peut ensuite relier le volume permanent Vp à Vr en utilisant que la remise en relax-

ation de la barre est une déformation élastique de taux de déformation εr − εp. Pour

cette déformation, la loi de Poisson s'applique:

Vr = Vpe
(1−2ν)(εr−εp).

Si on résoud pour Vp et qu'on utilise que εr = 0.27 et que εp = 0.261 (10), on trouve:

Vp = Vr × e−(1−2ν)(εr−εp) ' 530252× e−(1−2×0.45)(0.27−0.261) ' 529782mm3. (15)
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On peut ensuite identi�er Sp en utilisant que

Sp =
Vp
lp
' 529782

973.7
' 544mm, (16)

(d) La longueur permanente lp que vous venez d'obtenir ne convient pas encore à votre client. Pour

allonger la barre de plus, vous la soumettez à un recuit qui ne modi�e pas ses dimensions, puis

vous la remettez en traction en utilisant la même machine que tout à l'heure. On vous demande

de calculer le taux de déformation maximal εmax;2 que vous allez pouvoir atteindre, ainsi que le

taux de déformation εr;2 qu'il faudrait atteindre en relaxation si le souhait de votre client est

d'obtenir une barre dont la longueur est de 1230mm.

Solution

Après le recuit, le matériau de la barre a recouvré ses propriétés mécaniques initiales. En

particulier, sa résistance est Rm = 1652.3MPa. Cette valeur permet d'évaluer la charge

F2 qui est nécessaire pour faire passer la barre recuite par le point de résistance. Cette

charge s'obtient un multipliant la résistance Rm par la section S0;2 de la barre recuite au

début de sa mise en traction. Comme l'opération de recuit n'a pas modi�é sensiblement

les dimensions de la barre, S0;2 correspond à la section permanente Sp obtenue après la

relaxation de la première traction. D'après (12) on a donc

S0;2 = Sp ' 544.4mm2 (17)

et la conclusion est que

F2 = RmS0;2 ' 1652.3× 544.4 ' 899530N ' 0.8995MN. (18)

Comme cette charge est nettement inférieure à la force de Fmax ' 1.166MN que notre

machine peut développer (9), nous arriverons à amener la barre en rupture. Autrement

dit, le taux de déformation maximal atteignable sur la deuxième barre sera:

εmax;2 = εult = 0.41. (19)

Remarque Si on avait observé que

F2 = RmS0;2 > Fmax

alors il aurait fallu appliqué l'algorithme vu au cours pour trouver εmax;2. Cet algorithme

consiste à poser

α =
1

e
n

√
Fmax

F2
et x0 = α (20)

et à construire la suite {xm}m=∞
m=0 en appliquant la règle

xm+1 = αexm

pour passer de xm à xm+1. La limite de cette suite est x̄ et on a que

εmax;2 = nx̄.
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Si on avait appliqué l'algorithme dans notre situation où F2 > Fmax (18), on aurait com-

mencer par remarqué que le paramètre α était superieur à 1
e et l'algorithme n'aurait pas

convergé.

Comme l'opération de recuit ne modi�e pas les dimensions, la longueur initiale l0;2 au début

de la seconde traction est égale à la longueur permanente lp atteinte après la relaxation de

la première traction. Si la longueur �nale de la barre doit être de lp;2 = 1230mm, on en

conclut que le taux de déformation permanent auquel doit amener le second formage est

εp;2 = ln
lp;2
l0;2

= ln
lp;2
lp
' ln 1230

973.7 ' 0.233. (21)

Le taux εr;2 en lequel la deuxième traction doit être relâchée s'obtient alors en résolvant

l'équation de la déformation permanente:

εp;2
εe;2

=
εr;2
εe
−
(
εr;2
εe

)n2

(22)

où εe:2 et n2 sont respectivement le taux de déformation réel en limite élastique et le

coe�cient d'écrouissage du matériau constituant la barre au moment où elle subit la seconde

traction. Comme cette barre a été recuite, ces quantités sont rigoureusement identiques

à celles qui caractérisaient la barre au moment de la première traction, soit:

εe;2 = εe = 0.00205 et n2 = n = 0.3 (23)

Pour trouver εr;2 on applique alors l'algorithme du cours. On pose

α =
εp;2
εe;2
' 0.233

0.00205
' 113.68202

puis on pose x0 = α et on construit xm à partir de xm−1, m = 1, 2, 3, 4 . . . en appliquant

la règle:

xm = α+ x0.3m−1. (24)

La solution de εr;2 de (22) est égale à la limite de la suite {xm}m=∞
m=0 ampli�ée par εe;2 =

0.00205. On trouve:

m xm εe;2xm

0 113.6820 0.233574

1 117.8192 0.242074

2 117.8638 0.242166

3 117.8643 0.242167

Table 2: Les premières itérations de l'algorithme (24)

La conclusion de la Tab. 2 est que

εr;2 = εe;2 limm→∞ xm ' 0.2429 (25)

Puisque la longueur initiale de la barre en début de deuxième traction est lp = 973.7mm,

k on trouve que la longueur de relaxation est

lr;2 = lpe
εr;2 ' 973.7× e0.2429 ' 1240.6mm (26)
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(e) Est-ce que la seconde traction que vous venez de plani�er est réalisable? A quoi devez-vous prendre

garde?

Solution

Comme la valeur du taux de déformation εr;2 à atteindre en relaxation est inférieure au

taux de déformation en rupture:

εr;2 = 0.2429 < εult = 0.41 (27)

on pourra satisfaire les besoins de notre client à la suite de la seconde traction, sans qu'on

ait besoin d'e�ectuer un nouveau recuit.

(f) Vous devez remplir la �che de propriétés matières pour la barre que vous livrez à votre client.

Quelles valeurs indiquez-vous pour avec son module délasticité E′

(1) Le module d'élasticité E′?

Solution

E′ = 243.3GPa (invariant d'écrouissage) (28)

(2) Le coe�cient d'écrouissage n′?

Solution

n′ = 0.3 (invariant d'écrouissage) (29)

(3) Le coe�cient de Poisson ν′?

Solution

ν′ = 0.45 (invariant d'écrouissage) (30)

(4) Le taux de déformation réel ε′e en limite élastique?

Solution

ε′e = εe

(
εr
εe

)n
' 0.00205×

(
0.27

0.00205

)0.3

' 0.0086 (31)
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(5) Le module d'écrouissage K ′,

Solution

K ′ = E′ε′e
1−n ' 243.3× 0.00861−0.3 ' 8.712Gpa (32)

(g) Donner une évaluation de l'énergie Etr;1 nécessaire à e�ectuer la première traction (jusqu'à εmax

(cf. item (b))).

Solution

L'énergie de déformation Etr;1 s'estime par le haut et par la bas en mutlipliant l'énergie

spéci�que de déformation η1 d'abord par le plus petit volume que la barre prend, i.e son

volume initial V0 puis par son plus grand volume, i.e le volume �nal Vr (14) atteint au

moment de la relaxation:

V0η1 ≤ Etr;1 ≤ Vrη1. (33)

L'énergie spéci�que de déformation est l'aire sous la courbe de traction réelle entre les

abscisses ε = 0 et ε = εr:

η1 =

∫ εr

0

σ(ε) dε,

où

σ(ε) =

{
Eε, ε ≤ εe,
Kεn, ε > εe.

La conclusion est que

η1 =

∫ εe

0

Eεdε+

∫ εe

0

Kεn dε

soit en e�ectuant les quadratures et en utilisant les valeurs de E ' 243.3GPa, εe = 0.00205,

εr = εmax = 0.27, n = 0.3 et K ' 3.2GPa:

η1 =
E

2
ε2e +

K

n+ 1

(
εn+1
r − εn+1

e

)
' 243.3

2
× 0.002052 +

3.2

1.3
×
(
0.271.3 − 0.002051.3

)
.

Tous calculs faits, il vient:

η1 ' 0.448GPa = 0.448 J/mm
3
.

Avec cette valeur numérique et celles (14) et (13) de Vr et, respectivement, V0, l'estimation

cherchée (33) est

530143× 0.448 ' 237741 J ≤ Etr;1 ≤ 530252× 0.448 ' 237790 J.

En résumé

237741 J ≤ Etr;1 ≤ 237790 J. (34)


