Série 3.

Exercice 1

L'acier qui vous est livré est caractérisé par la courbe de traction donnée à la Fig. 1.

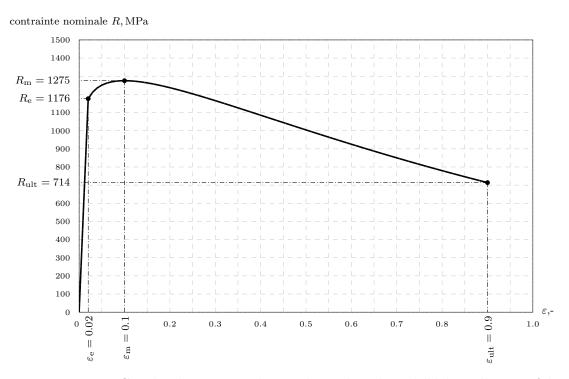


FIGURE 1 – Courbe de traction du matériau dans lequel l'échantillon est fabriqué

Vous devez déformer une barre de section initiale $S_0=350\,\mathrm{mm}^2$ faite dans cet acier.

- a) Vous montez la barre sur un machine de traction. A partir de quelle charge $F_{\rm e}$ (mesurée en kN) observerez-vous la plastification du matériau?
- b) Vous possédez en fait plusieurs machines de traction caractérisées chacune par la charge maximale F_{max} qu'elle peut développer (cf. Tab. 1). Quelle machine devez-vous choisir si vous souhaitez amener la barre en rupture?

machine No	1	2	3	4	5
F_{\max}	50 kN	$100\mathrm{kN}$	$500\mathrm{kN}$	1 MN	$2\mathrm{MN}$

Table 1 – Charge en fonction de la déformation

- c) Au moment de la rupture de la barre, quelle charge la machine applique-t-elle?
- d) Pouvez-vous calculer la valeur exacte du module d'Young du matériau, avec les informations disponibles sur la Fig. 1? Si oui faites-le, sinon estimez sa valeur en donnant une marge d'erreur.

- e) En admettant que le matériau suive une loi de Ludwik, donnez son coefficient d'écrouissage n.
- f) Sur la Fig. 2, esquissez la courbe qui représente la charge F en fonction du taux de déformation réel ε .

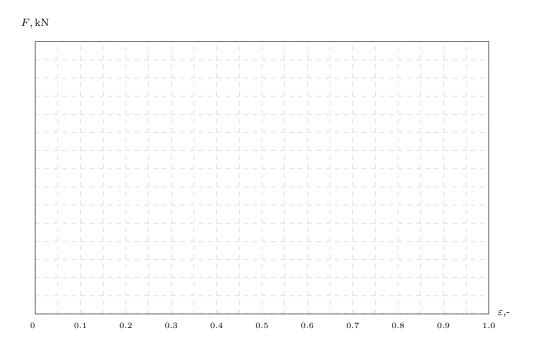


Figure 2 – Charge en fonction de la déformation

Exercice 2

Vous disposez d'une machine capable de développer une force de $F=0.1\,\mathrm{MN}$ pour étirer des barres faites dans un matériau de caractéristiques mécaniques connues :

limite élastique réelle	module d'élasticité	coefficient de Poisson
$\sigma_e = 690 \mathrm{MPa}$	$E = 30 \mathrm{GPa}$	$\nu = 0.42$

Table 1 – Caractéristiques mécaniques du matériau considéré

Vous estimez que ce matériau est recuit et qu'il suit ainsi une loi de Ludwik de coefficient $n \simeq 0.2$. Appliquez l'hypothèse de Considère et calculez

- a) Le taux de déformation réel en limite élastique $\varepsilon_{\rm e}$ du matériau,
- b) La limite élastique $R_{\rm e}$,
- c) La résistance $R_{\rm m}$ du matériau,
- d) Le taux de déformation maximal auquel vous êtes capable d'amener les barres si elles ont une section initiale de $S_0 = 1.2 \,\mathrm{cm}^2$.