Procédés de fabrication I - IGI, série 1

17 octobre 2025

1/27

Enoncé exercice 1 a)

Loi de Hooke linéarisée

 Votre chef d'atelier a l'habitude de caractériser l'état de déformation d'une barre étirée par le taux de déformation nominal:

$$e = \frac{I - I_0}{I_0}, \quad I_0, I:$$
 longueur initiale et finale. (1)

et de calculer la contrainte réelle $\sigma=\frac{F}{S}$ en utilisant la loi de Hooke dite **linéarisée** :

$$\sigma = Ee$$
 (Loi de Hooke linéarisée) (2)

Il effectue une traction et mesure

$$e = 0.005$$
 (3)

a) Selon votre chef d'atelier, quelle sera la contrainte réelle σ que la machine de traction est censée développer en fin d'expérience ?

El-Ma 17 octobre 2025 2/27

Loi de Hooke linéarisée

 a) La contrainte réele de fin d'expérience prédite par le chef d'atelier qui utilise la loi de Hooke linéarisée est :

$$\sigma = Ee = 50 \times 50 \times 0.005 = 0.250 \text{ GPa} = 250 \text{ MPa}.$$
 (4)

Enoncé exercice 1 b)-c)

Loi de Hooke linéarisée

 Votre chef d'atelier a l'habitude de caractériser l'état de déformation d'une barre étirée part le taux de déformation nominal:

$$e = \frac{I - I_0}{I_0}, \quad I_0, I:$$
 longueur initiale et finale. (5)

et de calculer la contrainte réelle $\sigma = \frac{F}{S}$ en utilisant la loi de Hooke dite **linéarisée** :

$$\sigma = Ee$$
 (Loi de Hooke linéarisée) (6)

Il effectue une traction et mesure

$$e = 0.005 \tag{7}$$

b) Quelle est la valeur **exacte** de cette contrainte, c'est à dire celle qu'on obtient en utilisant la **vraie** loi de Hooke :

$$\sigma = E\varepsilon$$
 (Loi de Hooke) (8)

où ε est le taux de déformation réel?

c) Que concluez-vous, est-ce que le niveau d'erreur est acceptable :

El-Ma 17 octobre 2025 4/27

Enoncé exercice 1 b)-c)

Loi de Hooke linéarisée

 Votre chef d'atelier a l'habitude de caractériser l'état de déformation d'une barre étirée part le taux de déformation nominal:

$$e = \frac{I - I_0}{I_0}, \quad I_0, I:$$
 longueur initiale et finale. (5)

et de calculer la contrainte réelle $\sigma = \frac{F}{S}$ en utilisant la loi de Hooke dite **linéarisée** :

$$\sigma = Ee$$
 (Loi de Hooke linéarisée) (6)

Il effectue une traction et mesure

$$e = 0.005 \tag{7}$$

b) Quelle est la valeur **exacte** de cette contrainte, c'est à dire celle qu'on obtient en utilisant la **vraie** loi de Hooke :

$$\sigma = E\varepsilon \quad \text{(Loi de Hooke)} \tag{8}$$

où ε est le taux de déformation réel?

c) Que concluez-vous, est-ce que le niveau d'erreur est acceptable?

4□ > 4□ > 4□ > 4□ > 4□ > 6

4/27

Si on sait ce que vaut e = ^{l-l₀}/_{l₀}, il n'est pas nécessaire de connaître la longueur initiale l₀ pour calculer le taux de déformation réel ε = In ^l/_{l₀}. On peut en effet tirer la valeur du rapport ^l/_ε de la mesure de e :

$$e = \frac{I - I_0}{I_0}$$

Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005)$$

• L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

5/27

• Si on sait ce que vaut $e=\frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon=\ln\frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1$$

Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005)$$

• L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

5/27

• Si on sait ce que vaut $e=\frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon=\ln\frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e$$

Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005)$$

L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

5/27

• Si on sait ce que vaut $e = \frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon = \ln \frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

Dans notre cas, on aura que

$$\epsilon = \ln(1 + 0.005)$$

L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

5/27

• Si on sait ce que vaut $e = \frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon = \ln \frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{l - l_0}{l_0} = \frac{l}{l_0} - 1 \Longrightarrow \frac{l}{l_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005) = \ln 1.005 \approx 0.00491$$

L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

5/27

• Si on sait ce que vaut $e=\frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon=\ln\frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

· Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005) = \ln 1.005 \simeq 0.00498$$

et, à la place des 250 MPa prédit par le chef d'atelier, la vraie loi de Hooke donne :

$$\sigma = E\varepsilon \tag{9}$$

• L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

5/27

• Si on sait ce que vaut $e = \frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon = \ln \frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

· Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005) = \ln 1.005 \simeq 0.00498$$

et, à la place des 250 MPa prédit par le chef d'atelier, la vraie loi de Hooke donne :

$$\sigma = E\varepsilon = 50 \times 0.00498 \tag{9}$$

• L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

5/27

• Si on sait ce que vaut $e = \frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon = \ln \frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

· Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005) = \ln 1.005 \simeq 0.00498$$

et, à la place des 250 MPa prédit par le chef d'atelier, la vraie loi de Hooke donne :

$$\sigma = \mathbf{E}\varepsilon = 50 \times 0.00498 \tag{9}$$

• L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

5/27

• Si on sait ce que vaut $e = \frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon = \ln \frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

· Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005) = \ln 1.005 \simeq 0.00498$$

et, à la place des 250 MPa prédit par le chef d'atelier, la vraie loi de Hooke donne :

$$\sigma = \mathbf{E}\varepsilon = 50 \times 0.00498 \approx 0.249 \, GPa = 249 \, MPa. \tag{9}$$

• L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

5/27

• Si on sait ce que vaut $e = \frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon = \ln \frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

· Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005) = \ln 1.005 \simeq 0.00498$$

et, à la place des 250 MPa prédit par le chef d'atelier, la vraie loi de Hooke donne :

$$\sigma = \mathbf{E}\varepsilon = 50 \times 0.00498 \approx 0.249 \ GPa = 249 \ MPa. \tag{9}$$

L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

◆ロ > ◆ 個 > ◆ 直 > ◆ 直 > り へ で

5/27

• Si on sait ce que vaut $e = \frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon = \ln \frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

· Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005) = \ln 1.005 \simeq 0.00498$$

et, à la place des 250 MPa prédit par le chef d'atelier, la vraie loi de Hooke donne :

$$\sigma = E\varepsilon = 50 \times 0.00498 \approx 0.249 \, GPa = 249 \, MPa. \tag{9}$$

L'erreur commise est faible (moins de 1%) et n'est certainement pas significative.

◆ロ > ◆ 個 > ◆ 直 > ◆ 直 > り へ で

5/27

• Si on sait ce que vaut $e = \frac{l-l_0}{l_0}$, il n'est pas nécessaire de connaître la longueur initiale l_0 pour calculer le taux de déformation réel $\varepsilon = \ln \frac{l}{l_0}$. On peut en effet tirer la valeur du rapport $\frac{l}{l_0}$ de la mesure de e:

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

· Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005) = \ln 1.005 \simeq 0.00498$$

et, à la place des 250 MPa prédit par le chef d'atelier, la vraie loi de Hooke donne :

$$\sigma = E\varepsilon = 50 \times 0.00498 \approx 0.249 \, \text{GPa} = 249 \, \text{MPa}. \tag{9}$$

 L'erreur commise est faible (moins de 1%) et n'est certainement pas significative. En effet les données, comme la valeur de E ou bien celles de l'et l₀ sont rarement mesurées avec une précision plus grande que le pourcent.

< ロ > < 個 > < 重 > < 重 > の < @

Si on sait ce que vaut e = ^{l-l₀}/_{l₀}, il n'est pas nécessaire de connaître la longueur initiale l₀ pour calculer le taux de déformation réel ε = ln ^l/_{l₀}. On peut en effet tirer la valeur du rapport ^l/_{l₀} de la mesure de e :

$$e = \frac{I - I_0}{I_0} = \frac{I}{I_0} - 1 \Longrightarrow \frac{I}{I_0} = 1 + e \Longrightarrow \varepsilon = \ln(1 + e).$$

· Dans notre cas, on aura que

$$\varepsilon = \ln(1 + 0.005) = \ln 1.005 \simeq 0.00498$$

et, à la place des 250 MPa prédit par le chef d'atelier, la vraie loi de Hooke donne :

$$\sigma = E\varepsilon = 50 \times 0.00498 \approx 0.249 \, GPa = 249 \, MPa. \tag{9}$$

 L'erreur commise est faible (moins de 1%) et n'est certainement pas significative. En effet les données, comme la valeur de E ou bien celles de l et l₀ sont rarement mesurées avec une précision plus grande que le pourcent.

◆□ ト ◆□ ト ◆ 三 ト ◆ 三 ・ り へ ○

5/27

Enoncé exercice 1 d)

Loi de Hooke linéarisée

 Votre chef d'atelier a l'habitude de caractériser l'état de déformation d'une barre étirée part le taux de déformation nominal:

$$e = \frac{I - I_0}{I_0}, \quad I_0, I:$$
 longueur initiale et finale. (10)

et de calculer la contrainte réelle $\sigma = \frac{F}{S}$ en utilisant la loi de Hooke dite **linéarisée** :

$$\sigma = Ee$$
 (Loi de Hooke linéarisée) (11)

Il effectue une traction et mesure

$$e = 0.005$$
 (12)

d) Refaites tout le raisonnement ci-dessus dans le cas où la déformation effectuée est une **grande** déformation qui correspond au taux nominal

$$e = 0.75.$$
 (13)

La stratégie de votre chef d'atelier se justifie-t-elle encore ?

El-Ma 17 octobre 2025 6/27

a) Dans le cas où e=0.75, alors la contrainte réelle de fin d'expérience prédite par le chef vaudra

$$\sigma = Ee = 50 \times 50 \times 0.75 = 37.5 \text{ GPa} = 37'500 \text{ MPa}.$$
 (14)

b) Le taux réel ε caractérisant cette grande déformation est cette fois

$$\varepsilon = \ln(1 + e) = \ln(1 + 0.75) \simeq 0.559.$$

c) La vraie valeur de la contrainte réelle en fin d'expérience sera

$$\sigma = E\varepsilon = 50 \times 50 \times 0.559 = 27.98 \, \text{GPa} = 27'980 \, \text{MPa}. \tag{15}$$

 Dans le cas des grandes déformations, il n'est donc plus possible d'utiliser la loi de Hooke linéarisée pour calculer les contraintes réelles.

7/27

a) Dans le cas où e=0.75, alors la contrainte réelle de fin d'expérience prédite par le chef vaudra

$$\sigma = Ee = 50 \times 50 \times 0.75 = 37.5 \text{ GPa} = 37'500 \text{ MPa}.$$
 (14)

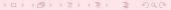
b) Le taux réel ε caractérisant cette grande déformation est cette fois :

$$\varepsilon = \ln(1 + e) = \ln(1 + 0.75) \simeq 0.559.$$

c) La vraie valeur de la contrainte réelle en fin d'expérience sera

$$\sigma = E\varepsilon = 50 \times 50 \times 0.559 = 27.98 \text{ GPa} = 27'980 \text{ MPa}. \tag{15}$$

 Dans le cas des grandes déformations, il n'est donc plus possible d'utiliser la loi de Hooke linéarisée pour calculer les contraintes réelles.



El-Ma 17 octobre 2025 7/27

a) Dans le cas où e=0.75, alors la contrainte réelle de fin d'expérience prédite par le chef vaudra

$$\sigma = Ee = 50 \times 50 \times 0.75 = 37.5 \text{ GPa} = 37'500 \text{ MPa}.$$
 (14)

b) Le taux réel ε caractérisant cette grande déformation est cette fois :

$$\varepsilon = \ln(1 + e) = \ln(1 + 0.75) \simeq 0.559.$$

c) La vraie valeur de la contrainte réelle en fin d'expérience sera

$$\sigma = E\varepsilon = 50 \times 50 \times 0.559 = 27.98 \text{ GPa} = 27'980 \text{ MPa}.$$
 (15)

 Dans le cas des grandes déformations, il n'est donc plus possible d'utiliser la loi de Hooke linéarisée pour calculer les contraintes réelles.

7/27

a) Dans le cas où e=0.75, alors la contrainte réelle de fin d'expérience prédite par le chef vaudra

$$\sigma = Ee = 50 \times 50 \times 0.75 = 37.5 \text{ GPa} = 37'500 \text{ MPa}.$$
 (14)

b) Le taux réel ε caractérisant cette grande déformation est cette fois :

$$\varepsilon = \ln(1 + e) = \ln(1 + 0.75) \simeq 0.559.$$

c) La vraie valeur de la contrainte réelle en fin d'expérience sera

$$\sigma = E\varepsilon = 50 \times 50 \times 0.559 = 27.98 \text{ GPa} = 27'980 \text{ MPa}.$$
 (15)

d) Dans le cas des grandes déformations, il n'est donc plus possible d'utiliser la loi de Hooke linéarisée pour calculer les contraintes réelles. Elle conduit systématiquement à un

7/27

a) Dans le cas où e=0.75, alors la contrainte réelle de fin d'expérience prédite par le chef vaudra

$$\sigma = Ee = 50 \times 50 \times 0.75 = 37.5 \text{ GPa} = 37'500 \text{ MPa}.$$
 (14)

b) Le taux réel ε caractérisant cette grande déformation est cette fois :

$$\varepsilon = \ln(1 + e) = \ln(1 + 0.75) \simeq 0.559.$$

La vraie valeur de la contrainte réelle en fin d'expérience sera

$$\sigma = E\varepsilon = 50 \times 50 \times 0.559 = 27.98 \text{ GPa} = 27'980 \text{ MPa}.$$
 (15)

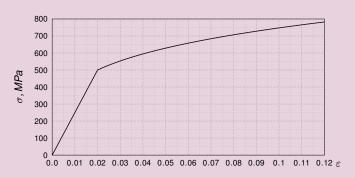
d) Dans le cas des grandes déformations, il n'est donc plus possible d'utiliser la loi de Hooke linéarisée pour calculer les contraintes réelles. Elle conduit systématiquement à un surestimation de l'effort nécessaire pour atteindre le niveau de déformation souhaité.

El-Ma 17 octobre 2025 7/27

Enoncé exercice 2 a)

Etude d'une courbe de traction

Voici la courbe de traction réelle d'un matériau recuit M :



- a) Déterminez graphiquement :
 - 1) le taux de déformation réel en limite élastique ε_e ,
 - 2) la limite élastique σ_e ,
 - 3) le module d'Young E.

El-Ma

Etude d'une courbe de traction

a) Le taux de déformation réel en limite élastique ε_e et la limite élastique σ_e sont les coord. du point où la courbe de traction réelle passe d'un comportement linéaire (élasticité) à un comportement sous-linéaire (plasticité).



Etude d'une courbe de traction

a) Le taux de déformation réel en limite élastique ε_e et la limite élastique σ_e sont les coord. du point où la courbe de traction réelle passe d'un comportement linéaire (élasticité) à un comportement sous-linéaire (plasticité).



Etude d'une courbe de traction

a) Le taux de déformation réel en limite élastique ε_e et la limite élastique σ_e sont les coord. du point où la courbe de traction réelle passe d'un comportement linéaire (élasticité) à un comportement sous-linéaire (plasticité).

Etude d'une courbe de traction

a) Le taux de déformation réel en limite élastique ε_e et la limite élastique σ_e sont les coord. du point où la courbe de traction réelle passe d'un comportement linéaire (élasticité) à un comportement sous-linéaire (plasticité). On lit sur la Fig. que

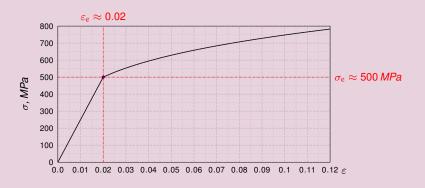
Etude d'une courbe de traction

 a) Le taux de déformation réel en limite élastique ε_e et la limite élastique σ_e sont les coord. du point où la courbe de traction réelle passe d'un comportement linéaire (élasticité) à un comportement sous-linéaire (plasticité). On lit sur la Fig. que

Etude d'une courbe de traction

 a) Le taux de déformation réel en limite élastique ε_e et la limite élastique σ_e sont les coord. du point où la courbe de traction réelle passe d'un comportement linéaire (élasticité) à un comportement sous-linéaire (plasticité). On lit sur la Fig. que

$$\varepsilon_e \approx 0.02~$$
 et que $~\sigma_e \approx 500$ MPa.

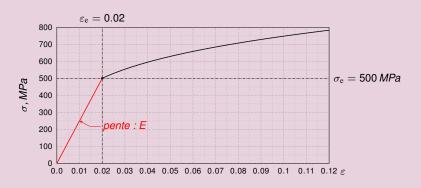


Etude d'une courbe de traction

a) Le module d'Young est la pente de la partie linéaire de la courbe de traction réelle :

Etude d'une courbe de traction

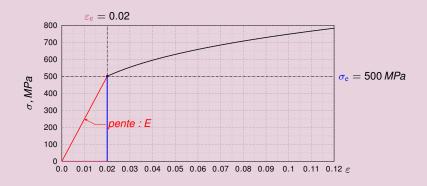
a) Le module d'Young est la pente de la partie linéaire de la courbe de traction réelle :



Etude d'une courbe de traction

a) Le module d'Young est la pente de la partie linéaire de la courbe de traction réelle :

$$E = \frac{\sigma_{\rm e}}{\varepsilon_{\rm e}} pprox \frac{500}{0.02}$$

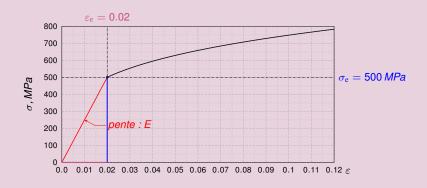


El-Ma

Etude d'une courbe de traction

a) Le module d'Young est la pente de la partie linéaire de la courbe de traction réelle :

$$E = \frac{\sigma_{\rm e}}{\varepsilon_{\rm e}} pprox \frac{500}{0.02} = 25'000 \, MPa$$

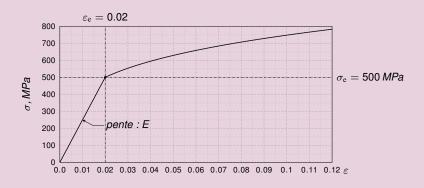


10/27

Etude d'une courbe de traction

a) Le module d'Young est la pente de la partie linéaire de la courbe de traction réelle :

$$E = \frac{\sigma_{\rm e}}{\varepsilon_{\rm e}} pprox \frac{500}{0.02} = 25'000 \, MPa$$

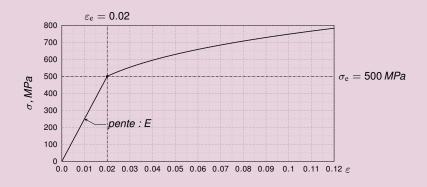


10/27

Etude d'une courbe de traction

a) Le module d'Young est la pente de la partie linéaire de la courbe de traction réelle :

$$E=rac{\sigma_{
m e}}{arepsilon_{
m e}}pproxrac{500}{0.02}=25'000~{\it MPa}=25~{\it GPa}.$$

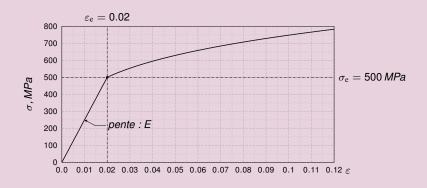


10/27

Etude d'une courbe de traction

a) Le module d'Young est la pente de la partie linéaire de la courbe de traction réelle :

$$E=rac{\sigma_{e}}{arepsilon_{e}}pproxrac{500}{0.02}=25'000\ \textit{MPa}=25\ \textit{GPa}.$$



10/27

Enoncé exercice 2 b)

Déformation d'une barre - taux de déf. permanent

- Une barre de longueur $\ell_0=1'000$ mm est faite dans le matériau $\mathcal M$ et vous aimeriez déformer cette barre de façon permanente jusqu'à une longueur $\ell=1'057$ mm.
- 1) Quel taux de déformation réel ε_p devez-vous atteindre de façon permanente ?

Déformation d'une barre - taux de déf. permanent

- Une barre de longueur $\ell_0=1'000$ mm est faite dans le matériau $\mathcal M$ et vous aimeriez déformer cette barre de façon permanente jusqu'à une longueur $\ell=1'057$ mm.
- 1) Le taux de déformation réel ε_p qu'on atteint en amenant à la longueur $\ell=1'057$ mm une barre de longueur initiale $\ell=1'000$ mm est

$$arepsilon_{
m p} = \ln rac{\ell}{\ell_0} = \ln rac{1057}{1000}$$

Déformation d'une barre - taux de déf. permanent

- Une barre de longueur $\ell_0=1'000$ mm est faite dans le matériau $\mathcal M$ et vous aimeriez déformer cette barre de façon permanente jusqu'à une longueur $\ell=1'057$ mm.
- 1) Le taux de déformation réel ε_p qu'on atteint en amenant à la longueur $\ell=1'057$ mm une barre de longueur initiale $\ell=1'000$ mm est

$$\varepsilon_p = \ln \frac{\ell}{\ell_0} = \ln \frac{1'057}{1'000}$$

Déformation d'une barre - taux de déf. permanent

- Une barre de longueur $\ell_0=1'000$ mm est faite dans le matériau $\mathcal M$ et vous aimeriez déformer cette barre de façon permanente jusqu'à une longueur $\ell=1'057$ mm.
- 1) Le taux de déformation réel ε_p qu'on atteint en amenant à la longueur $\ell=1'057$ mm une barre de longueur initiale $\ell=1'000$ mm est

$$\varepsilon_{\mathrm{p}} = \ln \frac{\ell}{\ell_{\mathrm{0}}} = \ln \frac{1'057}{1'000} \approx 0.055$$

Déformation d'une barre - taux de déf. permanent

- Une barre de longueur $\ell_0=1'000$ mm est faite dans le matériau $\mathcal M$ et vous aimeriez déformer cette barre de façon permanente jusqu'à une longueur $\ell=1'057$ mm.
- 1) Le taux de déformation réel ε_p qu'on atteint en amenant à la longueur $\ell=1'057$ mm une barre de longueur initiale $\ell=1'000$ mm est

$$arepsilon_{\mathrm{p}} = \ln rac{\ell}{\ell_0} = \ln rac{1'057}{1'000} pprox 0.055$$

Enoncé exercice 2 b)

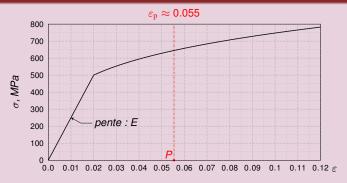
Déformation d'une barre - taux de déf. en relaxation

 Une barre de matériau M et de longueur ℓ₀ = 1'000 mm doit être déformée de façon permanente jusqu'à une longueur ℓ = 1'057 mm.

2) Déterminez graphiquement le taux de déformation réel $\varepsilon_{\rm r}$ que vous devez atteindre avant d'entamer la relaxation ainsi que la containte réelle $\sigma_{\rm r}$ induite dans la barre à ce moment-là.

13/27

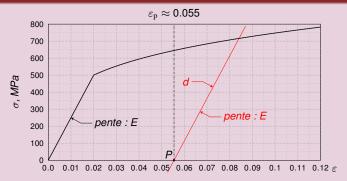
Déformation d'une barre - taux de déf. en relaxation



1) On place le point P de coordonnées ($\varepsilon_{\rm p}\approx 0.055,0.0$) dans le graphique. Par ce point, on

EI-Ma 17 octobre 2025 14/27

Déformation d'une barre - taux de déf. en relaxation

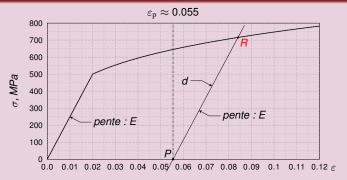


1) On place le point P de coordonnées ($\varepsilon_p \approx 0.055, 0.0$) dans le graphique. Par ce point, on mène une parallèle d à la droite de montée élastique. Le point R en lequel cette droite

El-Ma 17 octobre 2025

14/27

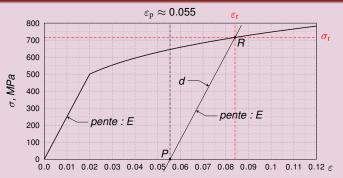
Déformation d'une barre - taux de déf. en relaxation



1) On place le point P de coordonnées ($\varepsilon_p \approx 0.055, 0.0$) dans le graphique. Par ce point, on mène une parallèle d à la droite de montée élastique. Le point R en lequel cette droite coupe la courbe de traction réelle est le point de **relaxation**. Ses coordonnées sont

El-Ma 17 octobre 2025 14/27

Déformation d'une barre - taux de déf. en relaxation



1) On place le point P de coordonnées ($\varepsilon_p \approx 0.055, 0.0$) dans le graphique. Par ce point, on mène une parallèle d à la droite de montée élastique. Le point R en lequel cette droite coupe la courbe de traction réelle est le point de **relaxation**. Ses coordonnées sont (ε_r , σ_r). On mesure sur le dessin que

El-Ma 17 octobre 2025 14/27

Déformation d'une barre - taux de déf. en relaxation



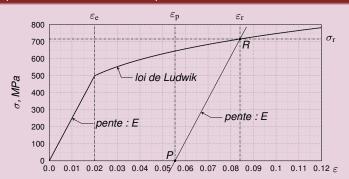
 On place le point P de coordonnées (ε_p ≈ 0.055, 0.0) dans le graphique. Par ce point, on mène une parallèle d à la droite de montée élastique. Le point R en lequel cette droite coupe la courbe de traction réelle est le point de **relaxation**. Ses coordonnées sont (ε_r, σ_r). On mesure sur le dessin que

 $\varepsilon_{\rm r} \approx 0.084$ et que $\sigma_{\rm e} \approx 716$ MPa.

El-Ma 17 octobre 2025 14/27

Enoncé exercice 2 b)

Equation de la déformation permanente

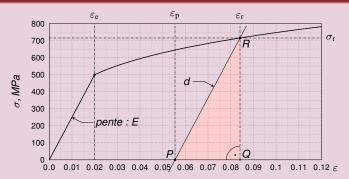


3) Si, lors de son écrouissage, le matériau $\mathcal M$ suit une loi de Ludwik (coefficient. n), justifiez que les taux de déformation réels permanent ε_p et en relaxation ε_r sont liés par l'équation dite de la **déformation permanente** :

$$\frac{\varepsilon_{\rm p}}{\varepsilon_{\rm e}} = \frac{\varepsilon_{\rm r}}{\varepsilon_{\rm e}} - \left(\frac{\varepsilon_{\rm r}}{\varepsilon_{\rm e}}\right)^n.$$

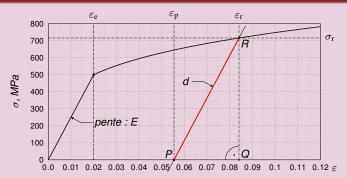
15/27

Equation de la déformation permanente



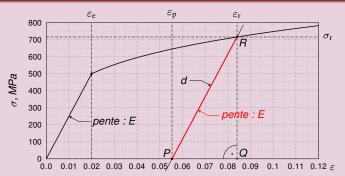
3) Le triangle RQP est rectangle en Q. La pente de son hypothénuse vaut

Equation de la déformation permanente



3) Le triangle RQP est rectangle en Q. La pente de son hypothénuse vaut E,

Equation de la déformation permanente

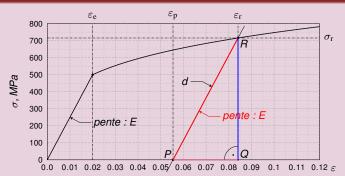


3) Le triangle RQP est rectangle en Q. La pente de son hypothénuse vaut E, donc

$$\frac{\overline{RQ}}{\overline{PQ}} = E. \tag{16}$$

16/27

Equation de la déformation permanente



3) Le triangle RQP est rectangle en Q. La pente de son hypothénuse vaut E, donc

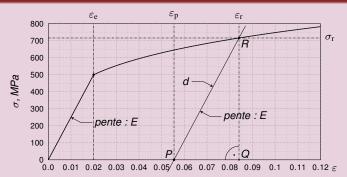
$$\frac{\overline{RQ}}{\overline{PQ}} = E. \tag{16}$$

4 D > 4 D > 4 E > 4 E > E 990

El-Ma

17 octobre 2025

Equation de la déformation permanente



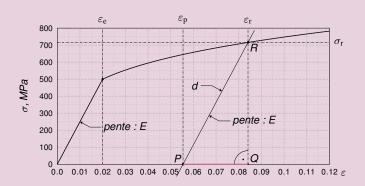
3) Le triangle RQP est rectangle en Q. La pente de son hypothénuse vaut E, donc

$$\frac{\overline{RQ}}{\overline{PQ}} = E.$$
 (16)

4日 → 4団 → 4 豆 → 4 豆 → 9 9 ○

16/27

Equation de la déformation permanente

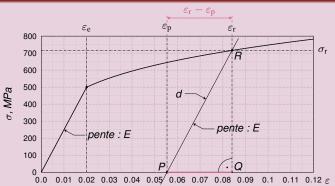


3) Or $\overline{PQ} = \varepsilon_{\rm r} - \varepsilon_{\rm p}$ et \overline{RQ}

$$\frac{\overline{RQ}}{\overline{PQ}} = E \Longrightarrow \frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r} - \varepsilon_{\rm p}} = E$$

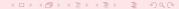
17/27

Equation de la déformation permanente



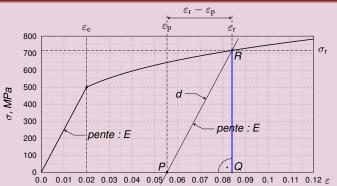
3) Or
$$\overline{PQ} = \varepsilon_{\rm r} - \varepsilon_{\rm p}$$
 et \overline{RQ}

$$\frac{\overline{RQ}}{\overline{PQ}} = E \longrightarrow \frac{K_{CP}}{R_{CP}} = E$$



17/27

Equation de la déformation permanente

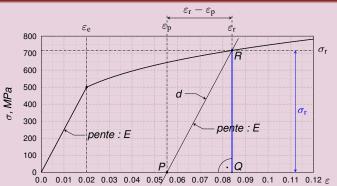


3) Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $\overline{RQ} = \sigma_r = K \varepsilon_r^n$ à cause de la loi de Ludwik,

$$\frac{\overline{RQ}}{\overline{PQ}} = E \Longrightarrow \frac{K \varepsilon_0^n}{\varepsilon_0 - \varepsilon_0} = E.$$

17/27

Equation de la déformation permanente

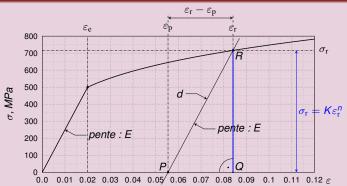


3) Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $\overline{RQ} = \sigma_r = K \varepsilon_r^n$ à cause de la loi de Ludwik,

$$\frac{\overline{RQ}}{\overline{PQ}} = E \Longrightarrow \frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r} - \varepsilon_{\rm p}} = E.$$

17/27

Equation de la déformation permanente

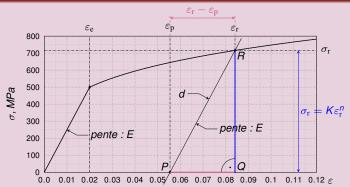


3) Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $\overline{RQ} = \sigma_r = K \varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\overline{RQ}}{\overline{PQ}} = E \Longrightarrow \frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r} - \varepsilon_{\rm p}} = E.$$

17/27

Equation de la déformation permanente



3) Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $\overline{RQ} = \sigma_r = K \varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\overline{RQ}}{\overline{PQ}} = E \Longrightarrow \frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r} - \varepsilon_{\rm p}} = E.$$

El-Ma 17 octobre 2025 17/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r}-\varepsilon_{\rm p}}=E.$$

· Si on divise cette relation par K

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut

• On divise la relation obtenue par $\varepsilon_{\epsilon}^{n}$

18/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\mathsf{K}\varepsilon_{\mathrm{r}}^{n}}{\varepsilon_{\mathrm{r}}-\varepsilon_{\mathrm{p}}}=\mathsf{E}.$$

Si on divise cette relation par Κ et qu'on la multiplie par ε_τ – ε_p, on trouve que

• Au cours, on a vu que le rapport
$$\frac{E}{K}$$
 vaut

• On divise la relation obtenue par
$$\varepsilon_{\rm e}^{\rm n}$$

18/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\textit{K}\varepsilon_r^n}{\varepsilon_r-\varepsilon_p}=\textit{E}.$$

• Si on divise cette relation par K et qu'on la multiplie par $\epsilon_r - \epsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut

• On divise la relation obtenue par ε_e^n

18/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\textit{K}\varepsilon_r^\textit{n}}{\varepsilon_r-\varepsilon_p}=\textit{E}.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut

• On divise la relation obtenue par ε_e^n

18/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\textit{K}\varepsilon_{r}^{\textit{n}}}{\varepsilon_{r}-\varepsilon_{p}}=\textit{E}.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut

• On divise la relation obtenue par $\varepsilon_{\rm e}^n$

18/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\textit{K}\varepsilon_{r}^{\textit{n}}}{\varepsilon_{r}-\varepsilon_{p}}=\textit{E}.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_{\rm r}-\varepsilon_{\rm p}$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{1-n}$ Avec ce

$$arepsilon_{
m r}^n = rac{arepsilon_{
m e}}{arepsilon_{
m e}} (arepsilon_{
m r} - arepsilon_{
m p})$$

• On divise la relation obtenue par ε_e^n

El-Ma

17 octobre 2025

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\textit{K}\varepsilon_r^\textit{n}}{\varepsilon_r-\varepsilon_p}=\textit{E}.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_{e}^{1-n}} = \frac{\varepsilon_{e}^{n}}{\varepsilon_{e}}$ Avec cette information :

$$arepsilon_{
m r}^n = rac{arepsilon_{
m e}}{arepsilon_{
m e}} (arepsilon_{
m r} - arepsilon_{
m p}).$$

• On divise la relation obtenue par ε_e^n

18/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r}-\varepsilon_{\rm p}}=E.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_0^{1-n}} = \frac{\varepsilon_0^n}{\varepsilon_0}$ Avec cette information :

$$arepsilon_{
m r}^n = rac{arepsilon_{
m e}}{arepsilon_{
m e}} (arepsilon_{
m r} - arepsilon_{
m p}).$$

• On divise la relation obtenue par ε_e^n

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r}-\varepsilon_{\rm p}}=E.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_{\rm e}^{1-n}} = \frac{\varepsilon_{\rm e}^n}{\varepsilon_{\rm e}}$ Avec cette information : $\varepsilon_{\rm r}^n = \frac{\varepsilon_{\rm e}}{\varepsilon_{\rm e}} (\varepsilon_{\rm r} - \varepsilon_{\rm p}).$

• On divise la relation obtenue par ε_n^n

18/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r}-\varepsilon_{\rm p}}=E.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_1^{1-n}} = \frac{\varepsilon_e^n}{\varepsilon_c}$ Avec cette information : $\varepsilon_r^n = \frac{\varepsilon_e^n}{\varepsilon_e} (\varepsilon_r - \varepsilon_p)$.

• On divise la relation obtenue par ε_e^n on from our

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\textit{K}\varepsilon_r^\textit{n}}{\varepsilon_r-\varepsilon_p}=\textit{E}.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_e^{1-n}} = \frac{\varepsilon_e^n}{\varepsilon_e}$ Avec cette information :

$$\varepsilon_{\rm r}^{n} = \frac{\varepsilon_{\rm e}^{n}}{\varepsilon_{\rm e}} (\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• On divise la relation obtenue par $\varepsilon_{\rm e}^{\rm n}$ on trouve que

$$\frac{\varepsilon_{\rm r}^n}{\varepsilon_{\rm e}^n} = \frac{\varepsilon_{\rm r}}{\varepsilon_{\rm e}} - \frac{\varepsilon_{\rm p}}{\varepsilon_{\rm e}}$$

18/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{\mathit{K}\varepsilon_{r}^{\mathit{n}}}{\varepsilon_{r}-\varepsilon_{p}}=\mathit{E}.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_e^{1-n}} = \frac{\varepsilon_e^n}{\varepsilon_e}$ Avec cette information :

$$\varepsilon_{\rm r}^n = \frac{\varepsilon_{\rm e}^n}{\varepsilon_{\rm e}} (\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• On divise la relation obtenue par $\varepsilon_{\rm e}^{\rm n}$ on trouve que

$$\frac{\varepsilon_r^n}{\varepsilon_e^n} = \frac{\varepsilon_r}{\varepsilon_e} - \frac{\varepsilon_p}{\varepsilon_e} \iff \frac{\varepsilon_p}{\varepsilon_e} = \frac{\varepsilon_r}{\varepsilon_e} - \left(\frac{\varepsilon_r}{\varepsilon_e}\right)$$

18/27

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r}-\varepsilon_{\rm p}}=E.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_{e}^{1-n}} = \frac{\varepsilon_{e}^{n}}{\varepsilon_{e}}$ Avec cette information :

$$\varepsilon_{\rm r}^n = \frac{\varepsilon_{\rm e}^n}{\varepsilon_{\rm e}} (\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• On divise la relation obtenue par $\varepsilon_{\rm e}^n$ on trouve que

$$\frac{\varepsilon_r^n}{\varepsilon_e^n} = \frac{\varepsilon_r}{\varepsilon_e} - \frac{\varepsilon_p}{\varepsilon_e} \Longleftrightarrow \frac{\varepsilon_p}{\varepsilon_e} = \frac{\varepsilon_r}{\varepsilon_e} - \left(\frac{\varepsilon_r}{\varepsilon_e}\right)^n$$

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r}-\varepsilon_{\rm p}}=E.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_{e}^{1-n}} = \frac{\varepsilon_{e}^{n}}{\varepsilon_{e}}$ Avec cette information :

$$\varepsilon_{\rm r}^n = \frac{\varepsilon_{\rm e}^n}{\varepsilon_{\rm e}} (\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

• On divise la relation obtenue par $\varepsilon_{\rm e}^n$ on trouve que

$$\frac{\varepsilon_{r}^{n}}{\varepsilon_{e}^{n}} = \frac{\varepsilon_{r}}{\varepsilon_{e}} - \frac{\varepsilon_{p}}{\varepsilon_{e}} \Longleftrightarrow \frac{\varepsilon_{p}}{\varepsilon_{e}} = \frac{\varepsilon_{r}}{\varepsilon_{e}} - \left(\frac{\varepsilon_{r}}{\varepsilon_{e}}\right)^{n}$$

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r}-\varepsilon_{\rm p}}=E.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

- Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_{\rm e}^{1-n}} = \frac{\varepsilon_{\rm e}^n}{\varepsilon_{\rm e}}$ Avec cette information : $\varepsilon_{\rm r}^n = \frac{\varepsilon_{\rm e}^n}{\varepsilon_{\rm e}} (\varepsilon_{\rm r} \varepsilon_{\rm p}).$
- On divise la relation obtenue par ε_e^n on trouve que

$$\frac{\varepsilon_r^n}{\varepsilon_e^n} = \frac{\varepsilon_r}{\varepsilon_e} - \frac{\varepsilon_p}{\varepsilon_e} \Longleftrightarrow \frac{\varepsilon_p}{\varepsilon_e} = \frac{\varepsilon_r}{\varepsilon_e} - \left(\frac{\varepsilon_r}{\varepsilon_e}\right)^n \quad \textit{(Equ. def. perm.)}$$

Equation de la déformation permanente

• Or $\overline{PQ} = \varepsilon_r - \varepsilon_p$ et $RQ = \sigma_r = K\varepsilon_r^n$ à cause de la loi de Ludwik, donc

$$\frac{K\varepsilon_{\rm r}^n}{\varepsilon_{\rm r}-\varepsilon_{\rm p}}=E.$$

• Si on divise cette relation par K et qu'on la multiplie par $\varepsilon_r - \varepsilon_p$, on trouve que

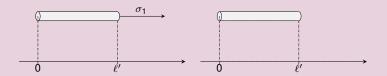
$$\varepsilon_{\rm r}^n = \frac{E}{K}(\varepsilon_{\rm r} - \varepsilon_{\rm p}).$$

- Au cours, on a vu que le rapport $\frac{E}{K}$ vaut $\frac{1}{\varepsilon_{\rm e}^{1-n}} = \frac{\varepsilon_{\rm e}^n}{\varepsilon_{\rm e}}$ Avec cette information : $\varepsilon_{\rm r}^n = \frac{\varepsilon_{\rm e}^n}{\varepsilon_{\rm e}} (\varepsilon_{\rm r} \varepsilon_{\rm p}).$
- On divise la relation obtenue par ε_e^n on trouve que

$$\frac{\varepsilon_r^n}{\varepsilon_e^n} = \frac{\varepsilon_r}{\varepsilon_e} - \frac{\varepsilon_p}{\varepsilon_e} \Longleftrightarrow \frac{\varepsilon_p}{\varepsilon_e} = \frac{\varepsilon_r}{\varepsilon_e} - \left(\frac{\varepsilon_r}{\varepsilon_e}\right)^n \quad \textit{(Equ. déf. perm.)}$$

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte a.
- La 2^{eme} barre n'est pas précontrainte.
 - ℓ On les étire à une long. commune $\ell=2030$ mm :

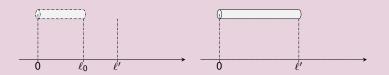


tx. de déf. réel en lim. élas. module d'Young coeff. d'écr.

1) Calculer les contraintes σ_1 , σ et σ_2 .

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte o₁.
- La 2^{eme} barre n'est pas précontrainte.
 - ℓ On les étire à une long. commune $\ell=2030$ mm :



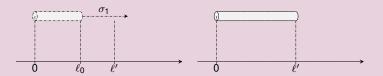
tx. de déf. réel en lim. élas. module d'Young coeff. d'écr.

 $\epsilon_0 = 0.1$ - $\epsilon = 500$ GPa $\epsilon = 0.20$ -

1) Calculer les contraintes σ_1 , σ et σ_2 .

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{eme} barre n'est pas précontrainte
 - On les étire à une long. commune $\ell=2030$ mm :

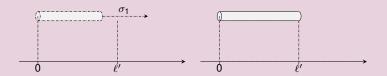


tx. de déf. réel en lim. élas. module d'Young coeff. d'écr.

1) Calculer les contraintes σ_1 , σ_2 et σ_2 .

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1ère barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{eme} barre n'est pas précontrainte.
 - On les étire à une long. commune $\ell=2030$ mm :



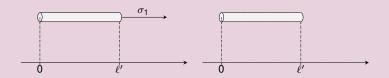
tx. de déf. réel en lim. élas. module d'Young coeff. d'écr.

 $arepsilon_{ heta}=0.1$ - arepsilon=300 GPa arepsilon=0.20 - arepsilon=0.20 -

1) Calculer les contraintes σ_1 , σ et σ_2

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{eme} barre n'est pas précontrainte
 - On les étire à une long. commune $\ell=2030$ mm :

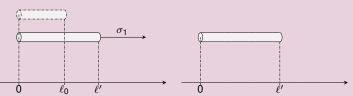


tx. de déf. réel en lim. élas. module d'Young coeff. d'écr. $\varepsilon_e = 0.1 - E = 300 \, GPa \qquad n = 0.26 \, -$

1) Calculer les contraintes σ_1 , σ et σ_2

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{eme} barre n'est pas précontrainte
- On les étire à une long. commune $\ell=2030~\text{mm}$:

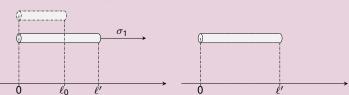


tx. de déf. réel en lim. élas. module d'Young coeff. d'écr. $\varepsilon_\theta = 0.1 - E = 300 \, GPa \qquad n = 0.26 - 100 \, GPa$

1) Calculer les contraintes σ_1 , σ et σ_2

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{ème} barre n'est pas précontrainte.



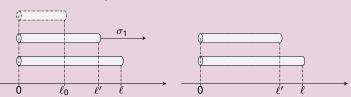
tx. de déf. réel en lim. élas. module d'Young coeff. d'écr.

 $\varepsilon_{\theta} = 0.1 - E = 300 GPa \qquad n = 0.26 -$

1) Calculer les contraintes σ_1 , σ et σ_2

Expérience des deux barres en élasticité

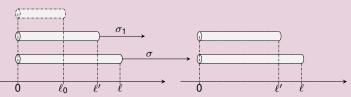
- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{ème} barre n'est pas précontrainte.
- On les étire à une long. commune $\ell=2030~\text{mm}$: niveaux de contrainte : σ



1--1----

Expérience des deux barres en élasticité

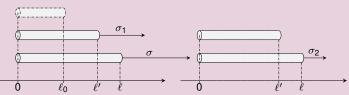
- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{ème} barre n'est pas précontrainte.
- On les étire à une long. commune $\ell=2030$ mm : niveaux de contrainte : $\sigma=\ell$



1) Calculer les contraintes σ_1 , σ et σ_2

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{ème} barre n'est pas précontrainte.
- On les étire à une long. commune $\ell=2030$ mm : niveaux de contrainte : σ et σ_2 .

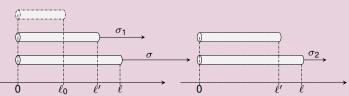


FI-Ma

1) Calculer les contraintes σ_1 , σ et σ_2

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1ère barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{ème} barre n'est pas précontrainte.
- On les étire à une long. commune $\ell=2030$ mm : niveaux de contrainte : σ et σ_2 .



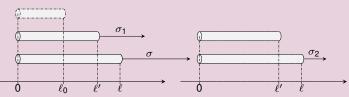
· La matière dans laquelle elles sont faites a les caractéristiques suivantes :

tx. de déf. réel en lim. élas.	module d'Young	coeff. d'écr.
$arepsilon_{ extit{ extit{e}}} = 0.1$ -	E = 300 GPa	n = 0.26 -

1) Calculer les contraintes σ_1 , σ et σ_2 .

Expérience des deux barres en élasticité

- On a deux barres de même longueur $\ell'=2000$ mm et de même matière :
- La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁.
- La 2^{ème} barre n'est pas précontrainte.
- On les étire à une long. commune $\ell=2030$ mm : niveaux de contrainte : σ et σ_2 .

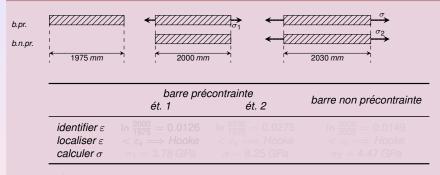


La matière dans laquelle elles sont faites a les caractéristiques suivantes :

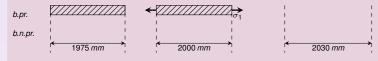
tx. de déf. réel en lim. élas.	module d'Young	coeff. d'écr.
$arepsilon_{m{e}}=$ 0.1 -	E = 300 GPa	n = 0.26 -

1) Calculer les contraintes σ_1 , σ et σ_2 .

Expérience des deux barres : contraintes



Expérience des deux barres : contraintes

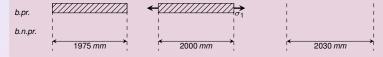


	barre préconti	ainte	
ét.	1	ét. i	2

barre non précontrainte

identifier ε In $\frac{2000}{1975} = 0.0126$ localiser ε calculer σ = 3.78 GPa

Expérience des deux barres : contraintes



harra prágontrainta

	ét. 1	ét. 2	barre non précontrainte
identifier ε	$\ln \frac{2000}{1075} = 0.0126$	$\ln \frac{2030}{1075} = 0.0275$	$\ln \frac{2030}{2000} = 0.0149$

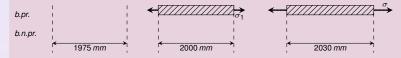
 $\begin{array}{ll} \text{Identifier } \varepsilon & \text{In } \frac{\varepsilon}{1975} = 0.0126 \\ \text{localiser } \varepsilon & < \varepsilon_{\text{e}} \Longrightarrow \text{Hooke} \\ \text{calculer } \sigma & = 3.78 \text{ GPa} \end{array}$

Expérience des deux barres : contraintes

barre précontrainte

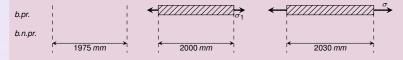
	ét. 1	ét. 2	barre non precontrainte
	$\ln \frac{2000}{1975} = 0.0126$	$\ln \frac{2030}{1975} = 0.0275$	$\ln \frac{2030}{2000} = 0.0149$
localiser $arepsilon$	$ Hooke$		
calculer σ	$\sigma_1 = 3.78 GPa$		

Cette observation signifie que la precontrainte ne modifie pas la deformabilite de la matière.



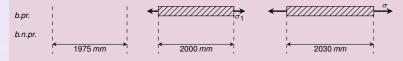
	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	$\begin{array}{l} \ln \frac{2000}{1975} = 0.0126 \\ < \varepsilon_{\rm e} \Longrightarrow \textit{Hooke} \\ \sigma_{\rm 1} = 3.78\textit{GPa} \end{array}$	$ \ln \frac{2030}{1975} = 0.0275 $ $ < \varepsilon_e \Longrightarrow Hooke $ $ \sigma = 8.25 GPa $	$\ln \frac{2030}{2000} = 0.0149$ $< \varepsilon_e \Longrightarrow Hooke$ $\sigma_2 = 4.47 GPa$

Expérience des deux barres : contraintes



barre précontrainte		barre non précontrainte	
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_e \Longrightarrow \textit{Hooke}$ $\sigma_1 = 3.78 \textit{GPa}$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_e \Longrightarrow \textit{Hooke}$ $\sigma = 8.25 \textit{ GPa}$	$\ln \frac{2030}{2000} = 0.0149$ $< \varepsilon_e \Longrightarrow Hooke$ $\sigma_2 = 4.47 GPa$

Expérience des deux barres : contraintes

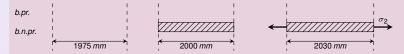


	barre précontrainte		barre non précontrainte	
		ét. 1	ét. 2	рате поп ргесопітатіе
_	identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_e \Longrightarrow \textit{Hooke}$ $\sigma_1 = 3.78 \textit{GPa}$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_e \Longrightarrow \textit{Hooke}$ $\sigma = 8.25 \textit{GPa}$	$\ln \frac{2030}{2000} = 0.0149$ $< \varepsilon_e \Longrightarrow Hooke$ $\sigma_2 = 4.47 GPa$

Incrément de contrainte b. pri

Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière.

Expérience des deux barres : contraintes

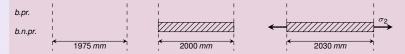


	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre Horr precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_{\rm e} \Longrightarrow {\it Hooke}$ $\sigma_1 = 3.78 {\it GPa}$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_{\rm e} \Longrightarrow \textit{Hooke}$ $\sigma = 8.25 \textit{GPa}$	$ \ln \frac{2030}{2000} = 0.0149 < \varepsilon_c \implies Hooke \sigma_2 = 4.47 GPa $

Incrément de contrainte b. pr.

Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière.

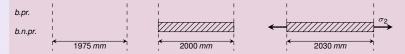
Expérience des deux barres : contraintes



barre précontrainte		barre non précontrainte	
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	19/0	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_{\rm e} \Longrightarrow \textit{Hooke}$ $\sigma = 8.25 \textit{GPa}$	$ \ln \frac{2030}{2000} = 0.0149 < \varepsilon_e \Longrightarrow Hooke \sigma_2 = 4.47 GPa $

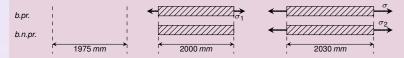
Incrément de contrainte b. pr.

Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière.



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_e \Longrightarrow Hooke$ $\sigma_1 = 3.78 \ GPa$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_{\rm e} \Longrightarrow {\it Hooke}$ $\sigma = 8.25 {\it GPa}$	$\ln rac{2030}{2000} = 0.0149$ $< arepsilon_e \Longrightarrow \textit{Hooke}$ $\sigma_2 = 4.47 \textit{ GPa}$

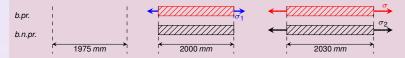
- Incrément de contrainte b. pr.
- Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière.



		barre pré ét. 1	contrainte ét. 2	barre non précontrainte
•	identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_{\rm e} \Longrightarrow Hooke$ $\sigma_1 = 3.78 \ GPa$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_{\rm e} \Longrightarrow \textit{Hooke}$ $\sigma = 8.25 \textit{GPa}$	$\ln \frac{2030}{2000} = 0.0149$ $< \varepsilon_e \Longrightarrow Hooke$ $\sigma_2 = 4.47 \ GPa$

- Incrément de contrainte b. pr.
- Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière.

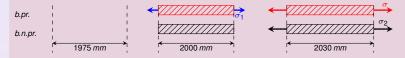
Expérience des deux barres : contraintes



		barre pré ét. 1	contrainte ét. 2	barre non précontrainte
lo	dentifier ε	$\ln \frac{2000}{1975} = 0.0126$	$\ln \frac{2030}{1975} = 0.0275$	$\ln \frac{2030}{2000} = 0.0149$
	ocaliser ε	$< \varepsilon_e \Longrightarrow Hooke$	$< \varepsilon_e \Longrightarrow \textit{Hooke}$	$< \varepsilon_e \Longrightarrow Hooke$
	valculer σ	$\sigma_1 = 3.78 GPa$	$\sigma = 8.25 \textit{GPa}$	$\sigma_2 = 4.47 \ GPa$

• Incrément de contrainte b. pr. : $\sigma - \sigma_1$

Expérience des deux barres : contraintes

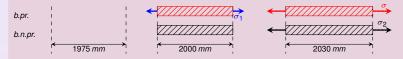


		barre pré ét. 1	contrainte ét. 2	barre non précontrainte
lo	dentifier ε	$\ln \frac{2000}{1975} = 0.0126$	$\ln \frac{2030}{1975} = 0.0275$	$\ln \frac{2030}{2000} = 0.0149$
	ocaliser ε	$< \varepsilon_e \Longrightarrow Hooke$	$< \varepsilon_e \Longrightarrow \textit{Hooke}$	$< \varepsilon_e \Longrightarrow Hooke$
	valculer σ	$\sigma_1 = 3.78 GPa$	$\sigma = 8.25 \textit{GPa}$	$\sigma_2 = 4.47 \ GPa$

[•] Incrément de contrainte b. pr. : $\sigma - \sigma_1 = 8.25 - 3.78$

El-Ma 17 octobre 2025

Expérience des deux barres : contraintes

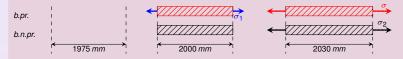


	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_e \Longrightarrow Hooke$ $\sigma_1 = 3.78 GPa$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_e \Longrightarrow Hooke$ $\sigma = 8.25 GPa$	$\ln \frac{2030}{2000} = 0.0149$ $< \varepsilon_{ m e} \Longrightarrow {\it Hooke}$ $\sigma_2 = 4.47 {\it GPa}$

[•] Incrément de contrainte b. pr. : $\sigma - \sigma_1 = 8.25 - 3.78$

El-Ma 17 octobre 2025

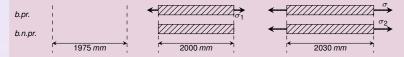
Expérience des deux barres : contraintes



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_e \Longrightarrow Hooke$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_e \Longrightarrow Hooke$	$ \ln \frac{2030}{2000} = 0.0149 \\ < \varepsilon_e \Longrightarrow Hooke $
calculer σ	$\sigma_1 = 3.78 GPa$	$\sigma =$ 8.25 <i>GPa</i>	$\sigma_2 = 4.47 GPa$

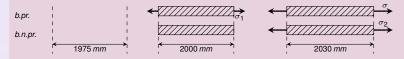
• Incrément de contrainte b. pr. : $\sigma - \sigma_1 = 8.25 - 3.78 = 4.47$ GPa

Expérience des deux barres : contraintes



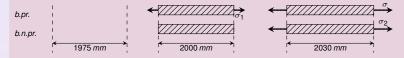
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier localiser calculer d	$arepsilon < \overset{1975}{arepsilon_{ m e}} ightarrow { m Hoo}$	ke $ Hooke$	$ Hooke$

• Incrément de contrainte b. pr. : $\sigma - \sigma_1 = 8.25 - 3.78 = 4.47$ GPa



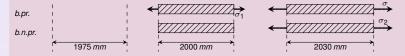
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_{\rm e} \Longrightarrow {\it Hooke}$ $\sigma_1 = 3.78 {\it GPa}$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_{\rm e} \Longrightarrow {\it Hooke}$ $\sigma = 8.25{\it GPa}$	$\ln \frac{2030}{2000} = 0.0149$ $< \varepsilon_e \Longrightarrow Hooke$ $\sigma_2 = 4.47 \ GPa$

- Incrément de contrainte b. pr. : $\sigma \sigma_1 = 8.25 3.78 = 4.47$ GPa $\sigma_2 = 3.25 3.78 = 4.47$ GPa
- Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière.



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_e \Longrightarrow Hooke$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_e \Longrightarrow Hooke$	$ \ln \frac{2030}{2000} = 0.0149 \\ < \varepsilon_e \Longrightarrow Hooke $
calculer σ	$\sigma_1 = 3.78 GPa$	$\sigma = 8.25 GPa$	$\sigma_2 = 4.47 GPa$

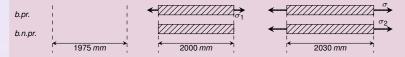
- Incrément de contrainte b. pr. : $\sigma \sigma_1 = 8.25 3.78 = 4.47$ GPa= σ_2 .
- Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière.



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_{\rm e} \Longrightarrow \textit{Hooke}$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_{\rm e} \Longrightarrow \textit{Hooke}$	$\ln rac{2030}{2000} = 0.0149$ $< arepsilon_{ m e} \Longrightarrow {\it Hooke}$
calculer σ	$\sigma_1=3.78GPa$	$\sigma=$ 8.25 <i>GPa</i>	$\sigma_2=$ 4.47 <i>GPa</i>

- Incrément de contrainte b. pr. : $\sigma \sigma_1 = 8.25 3.78 = 4.47$ GPa= σ_2 .
- Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière. Mais cela est du au fait qu'on est resté lot dans le régime élastique (lot de

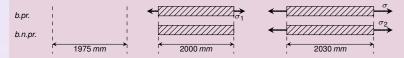
Expérience des deux barres : contraintes



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} = 0.0126$ $< \varepsilon_e \Longrightarrow Hooke$ $\sigma_1 = 3.78 \ GPa$	$\ln \frac{2030}{1975} = 0.0275$ $< \varepsilon_e \Longrightarrow \textit{Hooke}$ $\sigma = 8.25 \textit{GPa}$	$\ln rac{2030}{2000} = 0.0149 \ < arepsilon_e \Longrightarrow \textit{Hooke} \ \sigma_2 = 4.47 \textit{ GPa}$

- Incrément de contrainte b. pr. : $\sigma \sigma_1 = 8.25 3.78 = 4.47$ GPa= σ_2 .
- Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière. Mais cela est dû au fait qu'on est resté ici dans le régime élastique (loi de Hooke). On verra chaptes qu'il en va tout autrement lorsqu'on attent la plasticité, dans

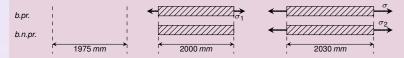
20/27



barre précontrainte		barre non précontrainte	
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} = 0.0126$	$\ln \frac{2030}{1975} = 0.0275$	$\ln \frac{2030}{2000} = 0.0149$
localiser $arepsilon$	$ Hooke$	$ Hooke$	$ Hooke$
calculer σ	$\sigma_1 = 3.78 GPa$	$\sigma=$ 8.25 <i>GPa</i>	$\sigma_2 = 4.47$ GPa

- Incrément de contrainte b. pr. : $\sigma \sigma_1 = 8.25 3.78 = 4.47$ GPa= σ_2 .
- Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière. Mais cela est dû au fait qu'on est resté ici dans le régime élastique (loi de Hooke). On verra ci-après qu'il en va tout autrement lorsqu'on atteint la plasticité: dans ce cas, la précontrainte améliore la déformabilité. Le fait que la précontrainte ne modifie

Expérience des deux barres : contraintes

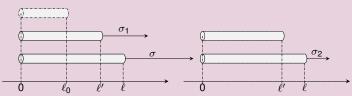


barre précontrainte		barre non précontrainte	
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} = 0.0126$	$\ln \frac{2030}{1975} = 0.0275$	$\ln \frac{2030}{2000} = 0.0149$
localiser $arepsilon$	$ Hooke$	$ Hooke$	$ Hooke$
calculer σ	$\sigma_1 = 3.78 GPa$	$\sigma=$ 8.25 <i>GPa</i>	$\sigma_2 = 4.47$ GPa

- Incrément de contrainte b. pr. : $\sigma \sigma_1 = 8.25 3.78 = 4.47$ GPa= σ_2 .
- Cette observation signifie que la précontrainte ne modifie pas la déformabilité de la matière. Mais cela est dû au fait qu'on est resté ici dans le régime élastique (loi de Hooke). On verra ci-après qu'il en va tout autrement lorsqu'on atteint la plasticité: dans ce cas, la précontrainte améliore la déformabilité. Le fait que la précontrainte ne modifie pas la déformabilité est intimement lié au caractère réversible (donc élastique) des déformations.

Expérience des deux barres en plasticité

• On reprend l'expérience des deux barres. Elles ont la même longueur $\ell'=2000$ mm.



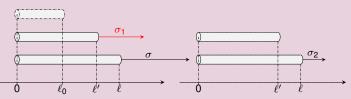
La 1^{ere} barre étirée depuis une barre plus courte est précontrainte à un niveau σ_1 .

 La matière dans laquelle elles sont faites a des caractéristiques un peu différentes (limite élastique plus faible) :

- 1) Calculer le module d'écrouissage K de la matière.
- 2) Calculer les contraintes σ_1 , σ et σ_2 .

Expérience des deux barres en plasticité

• On reprend l'expérience des deux barres. Elles ont la même longueur $\ell'=2000$ mm.



La 1^{ère} barre étirée depuis une barre plus courte est précontrainte à un niveau σ_1 . La 2^{ème} n'est pas précontrainte. On les elire toutes les deux à une longueurs commune

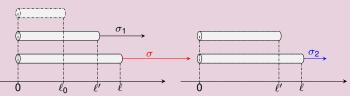
La matière dans laquelle elles sont faites a des caractéristiques un peu différentes (limité élastique plus faible) :

2) Calculer les contraintes a₁ a et a₂

21/27

Expérience des deux barres en plasticité

• On reprend l'expérience des deux barres. Elles ont la même longueur $\ell'=2000$ mm.



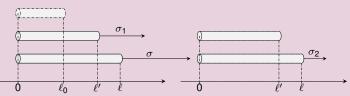
La 1^{ère} barre étirée depuis une barre plus courte est précontrainte à un niveau σ_1 . La 2^{ème} n'est pas précontrainte. On les étire toutes les deux à une longueurs commune $\ell=2030$ mm en appliquant des contraintes totales σ et respectivement σ_2 .

 La matière dans laquelle elles sont faites a des caractéristiques un peu différentes (limite élastique plus faible) :

- 1) Calculer le module d'écrouissage K de la matière
- 2) Calculer les contraintes σ_1 , σ et σ_2 .

Expérience des deux barres en plasticité

• On reprend l'expérience des deux barres. Elles ont la même longueur $\ell'=2000$ mm.



La 1 ère barre étirée depuis une barre plus courte est précontrainte à un niveau σ_1 . La $2^{\rm ème}$ n'est pas précontrainte. On les étire toutes les deux à une longueurs commune $\ell=2030$ mm en appliquant des contraintes totales σ et respectivement σ_2 .

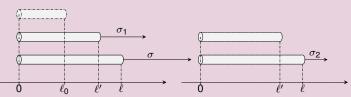
 La matière dans laquelle elles sont faites a des caractéristiques un peu différentes (limite élastique plus faible) :

tx. de déf. réel en lim. élas.	module d'Young	coeff. d'écr.
$arepsilon_{m{e}} = 0.01$ -	E = 300 GPa	n = 0.26 -

- 1) Calculer le module d'écrouissage K de la matière
- 2) Calculer les contraintes σ_1 , σ et σ_2

Expérience des deux barres en plasticité

• On reprend l'expérience des deux barres. Elles ont la même longueur $\ell'=2000$ mm.



La 1 ère barre étirée depuis une barre plus courte est précontrainte à un niveau σ_1 . La $2^{\grave{e}me}$ n'est pas précontrainte. On les étire toutes les deux à une longueurs commune $\ell=2030$ mm en appliquant des contraintes totales σ et respectivement σ_2 .

 La matière dans laquelle elles sont faites a des caractéristiques un peu différentes (limite élastique plus faible) :

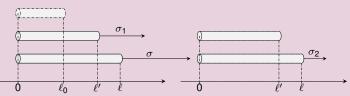
tx. de déf. réel en lim. élas.	module d'Young	coeff. d'écr.
$arepsilon_{m{ heta}}=$ 0.01 -	E = 300 <i>GPa</i>	n = 0.26 -

1) Calculer le module d'écrouissage K de la matière.

2) Calculer les contraintes σ_1 , σ et σ_2 .

Expérience des deux barres en plasticité

• On reprend l'expérience des deux barres. Elles ont la même longueur $\ell'=2000$ mm.



La 1 ère barre étirée depuis une barre plus courte est précontrainte à un niveau σ_1 . La $2^{\grave{e}me}$ n'est pas précontrainte. On les étire toutes les deux à une longueurs commune $\ell=2030$ mm en appliquant des contraintes totales σ et respectivement σ_2 .

 La matière dans laquelle elles sont faites a des caractéristiques un peu différentes (limite élastique plus faible) :

tx. de déf. réel en lim. élas.	module d'Young	coeff. d'écr.
$arepsilon_{m{ heta}}=$ 0.01 -	E = 300 <i>GPa</i>	n = 0.26 -

- 1) Calculer le module d'écrouissage K de la matière.
- 2) Calculer les contraintes σ_1 , σ et σ_2 .

Expérience des deux barres : module d'écrouissage

 Le module d'écrouissage K est lié au taux de déformation réel par la formule de compatibilité entre loi de Hooke et de Ludwik :

$$K = E\varepsilon_e^{1-n} = 300 \times (0.01)^{1-0.20} \tag{17}$$

Expérience des deux barres : module d'écrouissage

 Le module d'écrouissage K est lié au taux de déformation réel par la formule de compatibilité entre loi de Hooke et de Ludwik :

$$K = E\varepsilon_e^{1-n} \simeq 300 \times (0.01)^{1-0.26} \simeq 9.934 \, GPa.$$
 (17)

Expérience des deux barres : module d'écrouissage

 Le module d'écrouissage K est lié au taux de déformation réel par la formule de compatibilité entre loi de Hooke et de Ludwik :

$$K = E \varepsilon_{\theta}^{1-n} \simeq 300 \times (0.01)^{1-0.26} \simeq 9.934 \, GPa.$$
 (17)

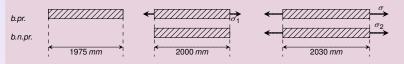
Expérience des deux barres : module d'écrouissage

 Le module d'écrouissage K est lié au taux de déformation réel par la formule de compatibilité entre loi de Hooke et de Ludwik :

$$K = E \varepsilon_{\theta}^{1-n} \simeq 300 \times (0.01)^{1-0.26} \simeq 9.934 \, \text{GPa}.$$
 (17)

El-Ma

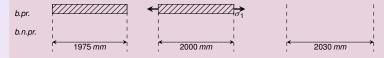
Expérience des deux barres : contraintes



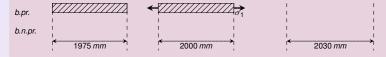
barre précontrainte ét. 1 ét. 2

barre non précontrainte

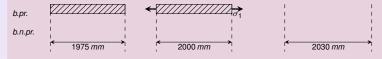
identifier ε localiser ε calculer σ



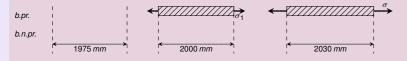
	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	$ \ln \frac{2000}{1975} \simeq 0.0126 > \varepsilon_e \Longrightarrow Ludwik \sigma_1 \simeq 3.185 GPa $	$\ln \frac{2030}{1975} \simeq 0.0275$ $> \varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma \simeq 3.902~GPa$	$\ln \frac{2030}{2000} \simeq 0.0149$ $> \varepsilon_c \Longrightarrow Ludwik$ $\sigma_2 \simeq 3.327 \ GPa$



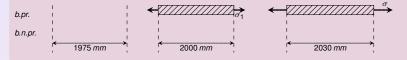
	barre précontrainte		harra non prágontrainta
	ét. 1	ét. 2	barre non précontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	$\ln \frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> \varepsilon_{ m e} \Longrightarrow $ Ludwik		
calculer σ			



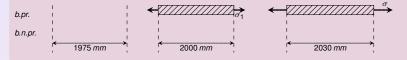
	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	$\begin{array}{l} \ln \frac{2000}{1975} \simeq 0.0126 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma_1 \simeq 3.185 \textit{GPa} \end{array}$	$\ln \frac{2030}{1975} \simeq 0.0275$ $> \varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma \simeq 3.902 GPa$	$\ln \frac{2030}{2000} \simeq 0.0149$ $> \varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_2 \simeq 3.327~GPa$



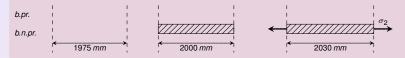
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	parre non precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} \simeq 0.0126$ $> \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik}$ $\sigma_1 \simeq 3.185 \textit{GPa}$	$\ln \frac{2030}{1975} \simeq 0.0275$ $> \varepsilon_c \Longrightarrow Ludwik$ $\sigma \simeq 3.902 GPa$	$\ln rac{2030}{2000} \simeq 0.0149$ $> arepsilon_e \Longrightarrow Ludwik$ $\sigma_2 \simeq 3.327~GPa$



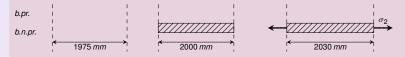
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	$\begin{array}{l} \ln \frac{2000}{1975} \simeq 0.0126 \\ > \varepsilon_{\rm e} \Longrightarrow {\it Ludwik} \\ \sigma_1 \simeq 3.185 {\it GPa} \end{array}$	$\ln \frac{2030}{1975} \simeq 0.0275$ $> \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik}$ $\sigma \simeq 3.902 \textit{GPa}$	$\ln \frac{2030}{2000} \simeq 0.0149$ $> \varepsilon_e \Longrightarrow Ludwik$ $\sigma_2 \simeq 3.327 \ GPa$



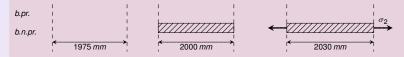
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} \simeq 0.0126$ $> \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik}$ $\sigma_1 \simeq 3.185 \textit{GPa}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma \simeq 3.902 \textit{GPa} \end{array}$	$\ln rac{2030}{2000} \simeq 0.0149$ $> arepsilon_e \Longrightarrow Ludwik$ $\sigma_2 \simeq 3.327~GPa$



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	parre non precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} \simeq 0.0126$ $> \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik}$ $\sigma_1 \simeq 3.185 \textit{GPa}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma \simeq 3.902 \textit{ GPa} \end{array}$	In $\frac{2030}{2000} \simeq 0.0149$ > $\varepsilon_e \Longrightarrow Ludwik$ $\sigma_2 \simeq 3.327 GPa$



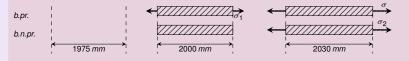
	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	In $\frac{2000}{1975} \simeq 0.0126$ > $\varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_1 \simeq 3.185~GPa$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma \simeq 3.902 \textit{GPa} \end{array}$	In $\frac{2030}{2000} \simeq 0.0149$ > $\varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_2 \simeq 3.327~GPa$



	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	$\begin{array}{l} \ln \frac{2000}{1975} \simeq 0.0126 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma_1 \simeq 3.185 \textit{ GPa} \end{array}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma \simeq 3.902 \textit{ GPa} \end{array}$	$\ln rac{2030}{2000} \simeq 0.0149 \ > arepsilon_{ m e} \Longrightarrow {\it Ludwik} \ \sigma_2 \simeq 3.327 \ {\it GPa}$

- Incrément de contrainte b. pr.
- Si le domaine plastique est atteint, l'incrément de contrainte pour mener des barres d'une longueur de départ à une longueur d'arrivée est différent si les barres sont relâchées ou précontraintes.
- Comme c'est dans sa partie élastique que l'étirage nécessite le plus de force, l'essentiel de l'effort aura déià été consenti pour les barres précontraintes.

Expérience des deux barres : contraintes



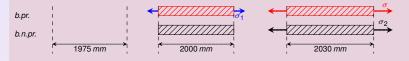
	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} \simeq 0.0126$ > $\varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_1 \simeq 3.185~GPa$	$\ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow {\it Ludwik} \\ \sigma \simeq 3.902 {\it GPa}$	$\ln rac{2030}{2000} \simeq 0.0149 \ > arepsilon_{ m e} \Longrightarrow {\it Ludwik} \ \sigma_2 \simeq 3.327 {\it GPa}$

Incrément de contrainte b. pr.

Si le domaine plastique est atteint, l'incrément de contrainte pour mener des barres d'une longueur de départ à une longueur d'arrivée est différent si les barres sont relâchées ou précontraintes.

Comme c'est dans sa partie élastique que l'étirage nécessite le plus de force, l'essentiel
de l'affort aura déià été consenti pour les barres précentraintes

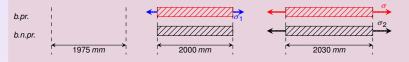
Expérience des deux barres : contraintes



	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} \simeq 0.0126$ $> \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik}$ $\sigma_1 \simeq 3.185 \textit{GPa}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow {\it Ludwik} \\ \sigma \simeq 3.902 {\it GPa} \end{array}$	$\ln rac{2030}{2000} \simeq 0.0149 \ > arepsilon_{ m e} \Longrightarrow {\it Ludwik} \ \sigma_{ m 2} \simeq 3.327 \ {\it GPa}$

Incrément de contrainte b. pr. : σ -

Expérience des deux barres : contraintes



	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} \simeq 0.0126$ $> \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik}$ $\sigma_1 \simeq 3.185 \textit{GPa}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow {\it Ludwik} \\ \sigma \simeq 3.902 {\it GPa} \end{array}$	$\ln rac{2030}{2000} \simeq 0.0149 \ > arepsilon_{ m e} \Longrightarrow {\it Ludwik} \ \sigma_{ m 2} \simeq 3.327 \ {\it GPa}$

• Incrément de contrainte b. pr. : $\sigma - \sigma_1 \simeq 3.902 - 3.185$

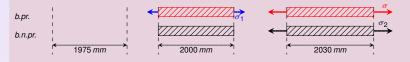
Expérience des deux barres : contraintes



	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} \simeq 0.0126$ $> \varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_1 \simeq 3.185 \ GPa$	$\ln \frac{2030}{1975} \simeq 0.0275$ $> \varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma \simeq 3.902~GPa$	$\ln rac{2030}{2000} \simeq 0.0149 \ > arepsilon_{ m e} \Longrightarrow {\it Ludwik} \ \sigma_{ m 2} \simeq 3.327 \ {\it GPa}$

• Incrément de contrainte b. pr. : $\sigma - \sigma_1 \simeq 3.902 - 3.185$

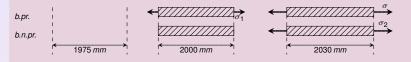
Expérience des deux barres : contraintes



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} \simeq 0.0126$ $> \varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_1 \simeq 3.185 GPa$	$\ln \frac{2030}{1975} \simeq 0.0275$ $> \varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma \simeq 3.902~GPa$	$\ln rac{2030}{2000} \simeq 0.0149 \ > arepsilon_{ m e} \Longrightarrow \textit{Ludwik} \ \sigma_2 \simeq 3.327 \textit{ GPa}$

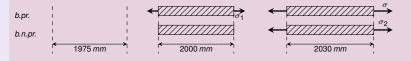
• Incrément de contrainte b. pr. : $\sigma - \sigma_1 \simeq 3.902 - 3.185 \simeq 0.717$ GPa

Expérience des deux barres : contraintes



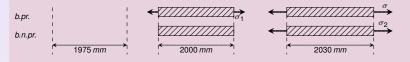
	barre pré ét. 1	contrainte ét. 2	barre non précontrainte
identifier ε localiser ε calculer σ	$\begin{array}{l} \ln \frac{2000}{1975} \simeq 0.0126 \\ > \varepsilon_{\rm e} \Longrightarrow {\it Ludwik} \\ \sigma_1 \simeq 3.185 {\it GPa} \end{array}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow {\it Ludwik} \\ \sigma \simeq 3.902 {\it GPa} \end{array}$	$\ln rac{2030}{2000} \simeq 0.0149 \ > arepsilon_{ m e} \Longrightarrow {\it Ludwik} \ \sigma_2 \simeq 3.327 \ {\it GPa}$

• Incrément de contrainte b. pr. : $\sigma - \sigma_1 \simeq 3.902 - 3.185 \simeq 0.717$ GPa $\ll \sigma_2$



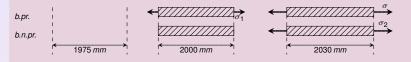
	barre précontrainte ét. 1 ét. 2		barre non précontrainte
identifier ε localiser ε calculer σ	$\ln \frac{2000}{1975} \simeq 0.0126$ $> \varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_1 \simeq 3.185~GPa$	In $\frac{2030}{1975} \simeq 0.0275$ > $\varepsilon_{\rm e} \Longrightarrow {\it Ludwik}$ $\sigma \simeq 3.902~{\it GPa}$	$\ln \frac{2030}{2000} \simeq 0.0149$ $> \varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_{\rm 2} \simeq 3.327~GPa$

- Incrément de contrainte b. pr. : $\sigma-\sigma_1\simeq 3.902-3.185 \simeq 0.717$ GPa $\ll\sigma_2$.
- Si le domaine plastique est atteint, l'incrément de contrainte pour mener des barres d'une longueur de départ à une longueur d'arrivée est différent si les barres sont relâchées ou précontraintes.
- Comme c'est dans sa partie élastique que l'étirage nécessite le plus de force, l'essentiel de l'effort aura déià été consenti pour les barres précontraintes.



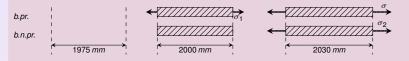
	barre précontrainte ét. 1 ét. 2		barre non précontrainte
identifier ε localiser ε calculer σ	$\begin{array}{l} \ln \frac{2000}{1975} \simeq 0.0126 \\ > \varepsilon_{\rm e} \Longrightarrow {\it Ludwik} \\ \sigma_1 \simeq 3.185 {\it GPa} \end{array}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow {\it Ludwik} \\ \sigma \simeq 3.902 {\it GPa} \end{array}$	$\ln \frac{2030}{2000} \simeq 0.0149$ $> \varepsilon_{\rm e} \Longrightarrow \text{Ludwik}$ $\sigma_{\rm 2} \simeq 3.327 \text{ GPa}$

- Incrément de contrainte b. pr. : $\sigma \sigma_1 \simeq 3.902 3.185 \simeq 0.717$ GPa $\ll \sigma_2$.
- Si le domaine plastique est atteint, l'incrément de contrainte pour mener des barres d'une longueur de départ à une longueur d'arrivée est différent si les barres sont relâchées ou précontraintes.
- Comme c'est dans sa partie élastique que l'étirage nécessite le plus de force, l'essentiel de l'effort aura déià été consenti pour les barres précontraintes.



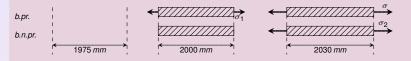
	barre précontrainte ét. 1 ét. 2		barre non précontrainte
identifier ε localiser ε calculer σ	$\begin{array}{l} \ln \frac{2000}{1975} \simeq 0.0126 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma_1 \simeq 3.185 \textit{GPa} \end{array}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow {\it Ludwik} \\ \sigma \simeq 3.902 {\it GPa} \end{array}$	In $\frac{2030}{2000} \simeq 0.0149$ > $\varepsilon_{ m e} \Longrightarrow Ludwik$ $\sigma_{ m 2} \simeq 3.327~GPa$

- Incrément de contrainte b. pr. : $\sigma \sigma_1 \simeq 3.902 3.185 \simeq 0.717$ GPa $\ll \sigma_2$.
- Si le domaine plastique est atteint, l'incrément de contrainte pour mener des barres d'une longueur de départ à une longueur d'arrivée est différent si les barres sont relâchées ou précontraintes.
- Comme c'est dans sa partie élastique que l'étirage nécessite le plus de force, l'essentiel de l'effort aura déjà été consenti pour les barres précontraintes.



	barre précontrainte ét. 1 ét. 2		barre non précontrainte
identifier ε localiser ε calculer σ	$\begin{array}{l} \ln \frac{2000}{1975} \simeq 0.0126 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma_1 \simeq 3.185 \textit{GPa} \end{array}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma \simeq 3.902\textit{GPa} \end{array}$	$\ln rac{2030}{2000} \simeq 0.0149 \ > arepsilon_{ m e} \Longrightarrow extit{Ludwik} \ \sigma_2 \simeq 3.327 extit{ GPa}$

- Incrément de contrainte b. pr. : $\sigma \sigma_1 \simeq 3.902 3.185 \simeq 0.717$ GPa $\ll \sigma_2$.
- Si le domaine plastique est atteint, l'incrément de contrainte pour mener des barres d'une longueur de départ à une longueur d'arrivée est différent si les barres sont relâchées ou précontraintes.
- Comme c'est dans sa partie élastique que l'étirage nécessite le plus de force, l'essentiel de l'effort aura déjà été consenti pour les barres précontraintes.



	barre précontrainte ét. 1 ét. 2		barre non précontrainte
identifier ε localiser ε calculer σ	$\begin{array}{l} \ln \frac{2000}{1975} \simeq 0.0126 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma_1 \simeq 3.185 \textit{GPa} \end{array}$	$\begin{array}{l} \ln \frac{2030}{1975} \simeq 0.0275 \\ > \varepsilon_{\rm e} \Longrightarrow \textit{Ludwik} \\ \sigma \simeq 3.902 \textit{ GPa} \end{array}$	In $\frac{2030}{2000} \simeq 0.0149$ > $\varepsilon_{ m e} \Longrightarrow Ludwik$ $\sigma_{ m 2} \simeq 3.327~GPa$

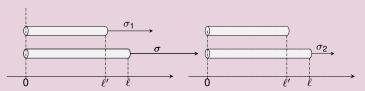
- Incrément de contrainte b. pr. : $\sigma \sigma_1 \simeq 3.902 3.185 \simeq 0.717$ GPa $\ll \sigma_2$.
- Si le domaine plastique est atteint, l'incrément de contrainte pour mener des barres d'une longueur de départ à une longueur d'arrivée est différent si les barres sont relâchées ou précontraintes.
- Comme c'est dans sa partie élastique que l'étirage nécessite le plus de force, l'essentiel de l'effort aura déjà été consenti pour les barres précontraintes. Celles-ce seront donc plus faciles à travailler que les barres relâchées.

Expérience des deux barres en plasticité

• On a deux barres de même longueur $\ell'=2000$ mm et de même matière :

tx. de déf. réel en lim. élas.	module d'Young	coeff. d'écr.
$arepsilon_{m{e}}=$ 0.01 -	E = 300 <i>GPa</i>	n = 0.26 -

 La 1ère barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁. La 2ème barre n'est pas précontrainte. On les étire à une long. commune ℓ = 2030 mm : niveaux de contrainte : σ et σ₂.



3) Que se passerait-il si le coefficient d'écrouissage n du matériau était quasiment nul?

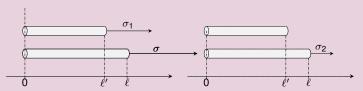
El-Ma

Expérience des deux barres en plasticité

• On a deux barres de même longueur $\ell'=2000$ mm et de même matière :

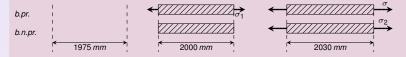
tx. de déf. réel en lim. élas.	module d'Young	coeff. d'écr.
$arepsilon_{m{e}}=$ 0.01 -	E = 300 GPa	n pprox 0 -

 La 1ère barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁. La 2ème barre n'est pas précontrainte. On les étire à une long. commune ℓ = 2030 mm : niveaux de contrainte : σ et σ₂.



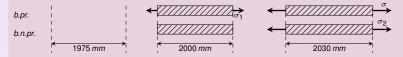
3) Que se passerait-il si le coefficient d'écrouissage n du matériau était quasiment nul?

El-Ma



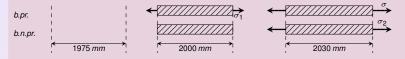
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	In $\frac{2000}{1975} \simeq 0.0126$ > $\varepsilon_e \Longrightarrow Ludwik$ $\sigma_1 \simeq 3.185 \ GPa$	$\ln \frac{2030}{1975} \simeq 0.0275$ > $\varepsilon_e \Longrightarrow Ludwik$ $\sigma \simeq 3.902 GPa$	In $\frac{2030}{2000} \simeq 0.0149$ > $\varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_2 \simeq 3.327~GPa$

- Si $n \approx 0$ Ludwik donne $\sigma = K \varepsilon^r$
 - L'incrément de ctrnt. pour la b. pr. est donc presque nul :
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



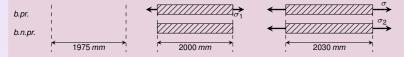
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	In $\frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> arepsilon_{ m e} \Longrightarrow Ludwik$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq 3.185$ <i>GPa</i>	$\sigma \simeq$ 3.902 <i>GPa</i>	$\sigma_2 \simeq$ 3.327 <i>GPa</i>

- Si $n \approx 0$ Ludwik donne $\sigma = K \varepsilon^n$
- · l'incrément de ctret nour la horr est donc presque pul
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



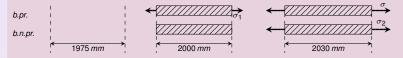
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	In $\frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> arepsilon_{ m e} \Longrightarrow Ludwik$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq 3.185$ <i>GPa</i>	$\sigma \simeq$ 3.902 <i>GPa</i>	$\sigma_2 \simeq$ 3.327 <i>GPa</i>

- Si $n \approx 0$ Ludwik donne $\sigma = K \varepsilon^0$
- l'incrément de ctrnt nour la honr est donc presque nul
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



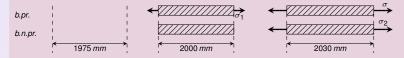
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	In $\frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> arepsilon_{ m e} \Longrightarrow Ludwik$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq 3.185$ <i>GPa</i>	$\sigma \simeq$ 3.902 <i>GPa</i>	$\sigma_2 \simeq$ 3.327 <i>GPa</i>

- Si $n \approx 0$ Ludwik donne $\sigma = K \varepsilon^0$
- · L'incrément de ctrnt. pour la b. pr. est donc presque nul :
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



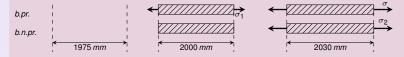
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Daire non precontrainte
		In $\frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> arepsilon_{ m e} \Longrightarrow {\sf Ludwik}$	$> arepsilon_{ m e} \Longrightarrow {\sf Ludwik}$	$> arepsilon_{ m e} \Longrightarrow extstyle e$
calculer σ	$\sigma_1 \simeq 3.185$ <i>GPa</i>	$\sigma \simeq$ 3.902 <i>GPa</i>	$\sigma_2 \simeq$ 3.327 <i>GPa</i>

- Si $n \approx 0$ Ludwik donne $\sigma = K$
- L'incrément de ctrnt, pour la b. pr. est donc presque nul :
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



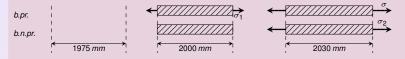
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
identifier ε localiser ε calculer σ	In $\frac{2000}{1975} \simeq 0.0126$ > $\varepsilon_e \Longrightarrow Ludwik$ $\sigma_1 \simeq 3.185 \ GPa$	$\ln \frac{2030}{1975} \simeq 0.0275$ > $\varepsilon_e \Longrightarrow Ludwik$ $\sigma \simeq 3.902 GPa$	In $\frac{2030}{2000} \simeq 0.0149$ > $\varepsilon_{\rm e} \Longrightarrow Ludwik$ $\sigma_2 \simeq 3.327~GPa$

- Si $n \approx 0$ Ludwik donne $\sigma = K = c^{ste}$
- · l'incrément de ctrnt nour la h. nr. est donc presque nul
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantilles reliebé



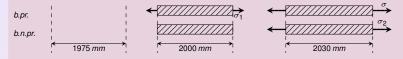
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	$\ln \frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$
calculer σ	$\sigma_1 \simeq 3.185$ <i>GPa</i>	$\sigma \simeq$ 3.902 <i>GPa</i>	$\sigma_2 \simeq$ 3.327 <i>GPa</i>

- Si $n \approx 0$ Ludwik donne $\sigma = K = c^{\text{ste}}$
- · L'incrément de ctrnt. pour la b. pr. est donc presque nul
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



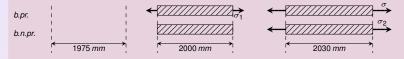
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	In $\frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> arepsilon_{ m e} \Longrightarrow Ludwik$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq 3.185$ <i>GPa</i>	$\sigma \simeq$ 3.902 <i>GPa</i>	$\sigma_2 \simeq$ 3.327 <i>GPa</i>

- Si $n \approx 0$ Ludwik donne $\sigma = K = c^{\text{ste}} = \sigma_e$
- · l'incrément de ctrnt nour la h. nr. est donc presque nul
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



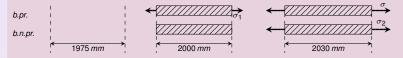
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	$\ln \frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq 3.185$ <i>GPa</i>	$\sigma \simeq$ 3.902 <i>GPa</i>	$\sigma_2 \simeq$ 3.327 <i>GPa</i>

- Si $n \approx 0$ Ludwik donne $\sigma = K = c^{ste} = \sigma_e$
- l'incrément de ctrnt, pour la b, pr. est donc presque nul.
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



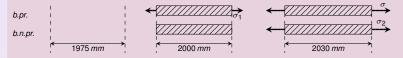
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	$\ln \frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$> arepsilon_{ m e} \Longrightarrow {\it Ludwik}$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq \sigma_{ m e}$	$\sigma \simeq$ 3.902 <i>GPa</i>	$\sigma_2 \simeq$ 3.327 <i>GPa</i>

- Si $n \approx 0$ Ludwik donne $\sigma = K = c^{ste} = \sigma_e$
- l'incrément de ctrnt, pour la b, pr. est donc presque nul.
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



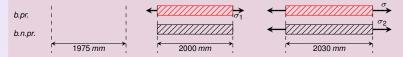
	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
	In $\frac{2000}{1975} \simeq 0.0126$		$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq \sigma_{ m e}$	$\sigma \simeq \sigma_{ m e}$	$\sigma_2 \simeq$ 3.327 <i>GPa</i>

- Si $n \approx 0$ Ludwik donne $\sigma = K = c^{ste} = \sigma_e$
- L'incrément de ctrnt. pour la b. pr. est donc presque nul .
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$		$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq \sigma_{ m e}$	$\sigma \simeq \sigma_{ m e}$	$\sigma_{ m 2} \simeq \sigma_{ m e}$

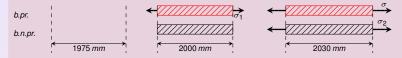
- Si $n \approx 0$ Ludwik donne $\sigma = K = c^{ste} = \sigma_e$
- L'incrément de ctrnt. pour la b. pr. est donc presque nul .
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	barre non precontrainte
	In $\frac{2000}{1975} \simeq 0.0126$		$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq \sigma_{ m e}$	$\sigma \simeq \sigma_{ m e}$	$\sigma_{2} \simeq \sigma_{ m e}$

- Si $n \approx 0$ Ludwik donne $\sigma = K = c^{ste} = \sigma_e$
- L'incrément de ctrnt. pour la b. pr. est donc presque nul : $\sigma \sigma_1 \approx \sigma_e \sigma_e = 0$
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché.

Expérience des deux barres : matériau plastiquement idéal

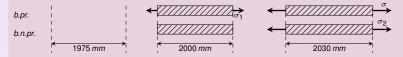


	barre pré	contrainte	barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	$\ln \frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq \sigma_{ m e}$	$\sigma \simeq \sigma_{ m e}$	$\sigma_{ m 2} \simeq \sigma_{ m e}$

- Si $n \approx 0$ Ludwik donne $\sigma = K = c^{ste} = \sigma_e$
- L'incrément de ctrnt. pour la b. pr. est donc presque nul : $\sigma-\sigma_1\approx\sigma_e-\sigma_e=0$
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché.

El-Ma

Expérience des deux barres : matériau plastiquement idéal



	barre précontrainte		barre non précontrainte
	ét. 1	ét. 2	Darre non precontrainte
identifier ε	$\ln \frac{2000}{1975} \simeq 0.0126$	$\ln \frac{2030}{1975} \simeq 0.0275$	$\ln \frac{2030}{2000} \simeq 0.0149$
localiser $arepsilon$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$> \varepsilon_{ m e} \Longrightarrow Ludwik$	$>$ $arepsilon_{ m e}$ \Longrightarrow Ludwik
calculer σ	$\sigma_1 \simeq \sigma_{ m e}$	$\sigma \simeq \sigma_{ m e}$	$\sigma_{ m 2} \simeq \sigma_{ m e}$

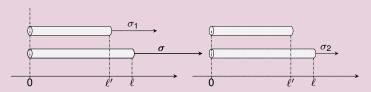
- Si n \approx 0 Ludwik donne $\sigma = K = c^{ste} = \sigma_e$
- L'incrément de ctrnt. pour la b. pr. est donc presque nul : $\sigma-\sigma_1\approx\sigma_e-\sigma_e=0$
- Dès qu'on a atteint le domaine d'irreversibilité, un échantillon précontraint fait dans un matériau plastiquement idéal est donc infiniment plus facile à déformer qu'un échantillon relâché.

El-Ma

Enoncé exercice 3 b)

Expérience des deux barres en plasticité

 On a deux barres de même longueur l' = 2000 mm et de même matière. La 1^{ère} barre est précontrainte car elle a été tirée d'une barre plus courte : niveau de contrainte σ₁. La 2^{ème} barre n'est pas précontrainte. On les étire à une long. commune l = 2030 mm : niveaux de contrainte : σ et σ₂.



- 4) Une machine de traction n'est généralement pas pilotée en fonction de la contrainte réelle qu'elle applique mais en fonction de la force de traction F qu'elle développe :
 - Pouvez-vous calculer le réglage de cette force en fin d'opération pour la barre précontrainte.
 - S'il vous manque une information partez du principe que l'alliage est incompressible.

Mesure de la force

• La force s'obtient en multipliant la contrainte $\sigma=3.902$ GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est inconnue.

$$F = \sigma S \tag{18}$$

• En cours de traction, la surface droite diminue a partir de sa valeur initiale $S_0 = \frac{\pi}{4} d_0^2 \simeq \frac{3.14}{4} \times 50^2 \simeq 1963 \ mm^2$.

27/27

Mesure de la force

• La force s'obtient en multipliant la contrainte $\sigma = 3.902$ GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est **inconnue.!**

$$F = \sigma S \tag{18}$$

En cours de traction, la surface droite diminue a partir de sa valeur initiale $S_0 = \frac{\pi}{4} d_0^2 \simeq \frac{3.14}{4} \times 50^2 \simeq 1963 \ mm^2$.

Mesure de la force

 La force s'obtient en multipliant la contrainte σ = 3.902 GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est inconnue.!

$$F = \sigma S \tag{18}$$

• En cours de traction, la surface droite diminue à partir de sa valeur initiale $S_0 = \frac{\pi}{4} d_0^2 \simeq \frac{3.14}{4} \times 50^2 \simeq 1963 \text{ mm}^2$. Si le corps est incompressible, on anticipe la diminution de S par l'équation de conservation du volume :

$$S_0\ell_0=S\ell$$

où $\ell_0=1'975$ mm et $\ell=2030$ mm. On résoud pour S il vient :

$$S = \frac{S_0 \ell_0}{\ell}$$

Substituant cette valeur et $\sigma=3.902$ GPa dans (18), on trouve la force :

Mesure de la force

 La force s'obtient en multipliant la contrainte σ = 3.902 GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est inconnue.!

$$F = \sigma S \tag{18}$$

En cours de traction, la surface droite diminue à partir de sa valeur initiale
 S₀ = ^π/₄ d₀² ≃ ^{3.14}/₄ × 50² ≃ 1963 mm². Si le corps est incompressible, on anticipe la diminution de S par l'équation de conservation du volume :

$$\textit{S}_0\ell_0=\textit{S}\ell$$

où $\ell_0=1'975$ mm et $\ell=2030$ mm. On résoud pour S il vient :

$$S = \frac{S_0 \ell_0}{\ell}$$

Substituant cette valeur et $\sigma = 3.902$ GPa dans (18), on trouve la force

 $F \simeq 3.902 \times 1'909$

27/27

Mesure de la force

 La force s'obtient en multipliant la contrainte σ = 3.902 GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est inconnue.!

$$F = \sigma S \tag{18}$$

En cours de traction, la surface droite diminue à partir de sa valeur initiale
 S₀ = ^π/₄ d₀² ≃ ^{3.14}/₄ × 50² ≃ 1963 mm². Si le corps est incompressible, on anticipe la diminution de S par l'équation de conservation du volume :

$$\textit{S}_0\ell_0=\textit{S}\ell$$

où $\ell_0=1'975$ mm et $\ell=2030$ mm. On résoud pour S il vient :

$$S = \frac{S_0 \ell_0}{\ell} \simeq \frac{1963 \times 1975}{2030} \simeq 1909 \, \text{mm}^2.$$

Substituant cette valeur et $\sigma = 3.902$ GPa dans (18), on trouve la force

 $F \simeq 3.902 \times 1'909$

(19)

27/27

Mesure de la force

 La force s'obtient en multipliant la contrainte σ = 3.902 GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est inconnue.!

$$F = \sigma S \tag{18}$$

En cours de traction, la surface droite diminue à partir de sa valeur initiale
 S₀ = π/4 d₀² ≈ 3.14/4 × 50² ≈ 1963 mm². Si le corps est incompressible, on anticipe la diminution de S par l'équation de conservation du volume :

$$S_0\ell_0=S\ell$$

où $\ell_0=1'975$ mm et $\ell=2030$ mm. On résoud pour S il vient :

$$S = \frac{S_0 \ell_0}{\ell} \simeq \frac{1963 \times 1975}{2030} \simeq 1909 \, mm^2.$$

Substituant cette valeur et $\sigma = 3.902$ GPa dans (18), on trouve la force

$$F \simeq 3.902 \times 1'909$$
 (19)

27/27

Mesure de la force

 La force s'obtient en multipliant la contrainte σ = 3.902 GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est inconnue.!

$$F = \sigma S \tag{18}$$

En cours de traction, la surface droite diminue à partir de sa valeur initiale
 S₀ = π/4 d₀² ≈ 3.14/4 × 50² ≈ 1963 mm². Si le corps est incompressible, on anticipe la diminution de S par l'équation de conservation du volume :

$$S_0\ell_0=S\ell$$

où $\ell_0=1'975$ mm et $\ell=2030$ mm. On résoud pour S il vient :

$$S = \frac{S_0 \ell_0}{\ell} \simeq \frac{1963 \times 1975}{2030} \simeq 1909 \, \text{mm}^2.$$

Substituant cette valeur et $\sigma = 3.902$ GPa dans (18), on trouve la force

$$F \simeq 3.902 \times 1'909 = 7'452 \,\text{kW} = 3.932 \,\text{kW} \tag{19}$$

27/27

Mesure de la force

 La force s'obtient en multipliant la contrainte σ = 3.902 GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est inconnue.!

$$F = \sigma S \tag{18}$$

En cours de traction, la surface droite diminue à partir de sa valeur initiale
 S₀ = π/4 d₀² ≥ 3.14/4 × 50² ≥ 1963 mm². Si le corps est incompressible, on anticipe la diminution de S par l'équation de conservation du volume :

$$S_0\ell_0=S\ell$$

où $\ell_0=1'975$ mm et $\ell=2030$ mm. On résoud pour S il vient :

$$S = \frac{S_0 \ell_0}{\ell} \simeq \frac{1963 \times 1975}{2030} \simeq 1909 \, \text{mm}^2.$$

Substituant cette valeur et $\sigma = 3.902$ GPa dans (18), on trouve la force :

$$F \simeq 3.902 \times 1'909 = 7'452 \, kN = 7.452 \, MN.$$
 (19)

27/27

Mesure de la force

 La force s'obtient en multipliant la contrainte σ = 3.902 GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est inconnue.!

$$F = \sigma S \tag{18}$$

En cours de traction, la surface droite diminue à partir de sa valeur initiale
 S₀ = π/4 d₀² ≥ 3.14/4 × 50² ≥ 1963 mm². Si le corps est incompressible, on anticipe la diminution de S par l'équation de conservation du volume :

$$S_0\ell_0=S\ell$$

où $\ell_0=1'975$ mm et $\ell=2030$ mm. On résoud pour S il vient :

$$S = \frac{S_0 \ell_0}{\ell} \simeq \frac{1963 \times 1975}{2030} \simeq 1909 \, \text{mm}^2.$$

Substituant cette valeur et $\sigma = 3.902$ GPa dans (18), on trouve la force :

$$F \simeq 3.902 \times 1'909 = 7'452 \, kN = 7.452 \, MN. \tag{19}$$

El-Ma

Mesure de la force

 La force s'obtient en multipliant la contrainte σ = 3.902 GPa par la surface S de la surface droite de la barre en fin d'expérience, or la surface S est inconnue.!

$$F = \sigma S \tag{18}$$

En cours de traction, la surface droite diminue à partir de sa valeur initiale
 S₀ = π/4 d₀² ≥ 3.14/4 × 50² ≥ 1963 mm². Si le corps est incompressible, on anticipe la diminution de S par l'équation de conservation du volume :

$$S_0\ell_0=S\ell$$

où $\ell_0=1'975$ mm et $\ell=2030$ mm. On résoud pour S il vient :

$$S = \frac{S_0 \ell_0}{\ell} \simeq \frac{1963 \times 1975}{2030} \simeq 1909 \, \text{mm}^2.$$

Substituant cette valeur et $\sigma = 3.902$ GPa dans (18), on trouve la force :

$$F \simeq 3.902 \times 1'909 = 7'452 \, kN = 7.452 \, MN.$$
 (19)

El-Ma