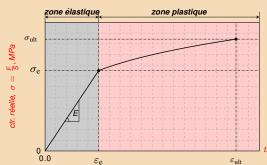
Procédés de fabrication I - IGI - HEIG-VD Propriétés Mécanique des Matériaux Résumé

8 novembre 2024

Représente la contrainte réelle en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon.
- La courbe de traction réelle est linéaire en zone élastique

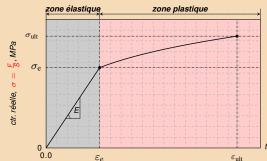


 $tx.\ de\ def.\ r\'eel, arepsilon = \ln\ rac{l}{l_0}$

Représente la contrainte réelle en fct. de la déformation

 La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.

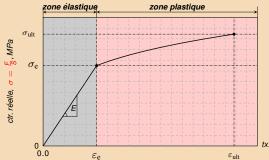
La courbe de traction réelle est linéaire en zone élastique



 $tx.\ de\ def.\ réel, arepsilon = \ln\ rac{l}{l_0}$

Représente la contrainte réelle en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.
- La courbe de traction réelle est linéaire en zone élastique

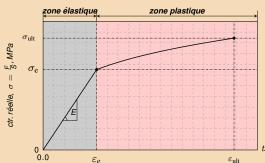


 $tx. de déf. réel, \varepsilon = \ln \frac{1}{l_0}$

► Etat de contrainte microscopique

Représente la contrainte réelle en fct. de la déformation

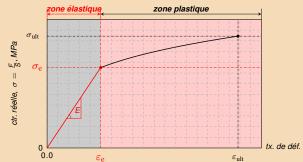
- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.
- La courbe de traction réelle est linéaire en zone élastique



 $tx.\ de\ def.\ réel, arepsilon = \ln\ rac{l}{l_0}$

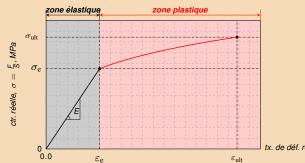
Représente la contrainte réelle en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.
- La courbe de traction réelle est linéaire en zone élastique puis strictement croissante jusqu'en rupture.



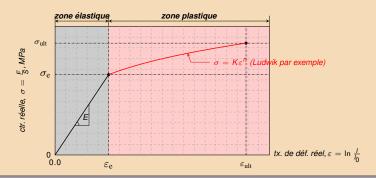
Représente la contrainte réelle en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.
- La courbe de traction réelle est linéaire en zone élastique puis strictement croissante jusqu'en rupture.

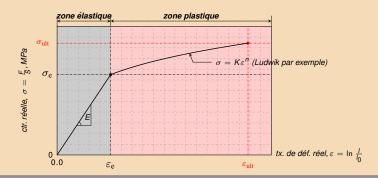


 $\mathit{tx.}$ de déf. $\mathit{r\'eel}, \varepsilon = \ln \frac{\mathit{l}}{\mathit{l}_0}$

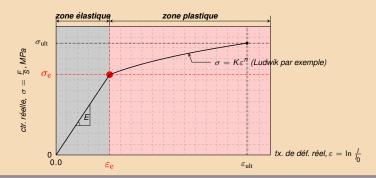
- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.
- La courbe de traction réelle est linéaire en zone élastique puis strictement croissante jusqu'en rupture.



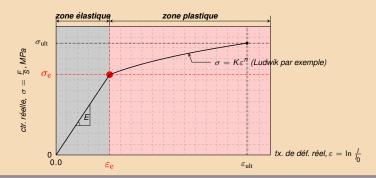
- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.
- La courbe de traction réelle est linéaire en zone élastique puis strictement croissante jusqu'en rupture.



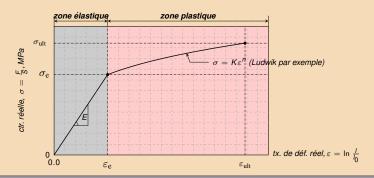
- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.
- La courbe de traction réelle est linéaire en zone élastique puis strictement croissante jusqu'en rupture.



- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.
- La courbe de traction réelle est linéaire en zone élastique puis strictement croissante jusqu'en rupture.



- La contrainte réelle est le rapport entre la force de traction et la section courante de l'échantillon. Elle correspond à la contrainte microscopique mesurable à l'aide d'une jauge de contraintes.
- La courbe de traction réelle est linéaire en zone élastique puis strictement croissante jusqu'en rupture.



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction e sa suface initale S₀ est donné par la loi de Poisson.

$$S = \left\{ \begin{array}{cc} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \end{array} \right.$$

Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**.

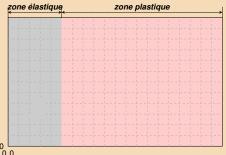
$$S = \left\{ egin{array}{ll} S_0 \mathbf{e}^{-2
uarepsilon}, & arepsilon \leq arepsilon_{\mathrm{e}}, \ S_0 \mathbf{e}^{(1-2
u)}, & arepsilon \leq arepsilon_{\mathrm{e}}, \ \end{array}
ight.$$

rap. de aurf.,

Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**.

$$S = \left\{ egin{array}{ll} S_0 \mathbf{e}^{-2
uarepsilon}, & arepsilon \leq arepsilon_{\mathbf{e}}, \ S_0 \mathbf{e}^{(1-2
u)arepsilon_{\mathbf{e}}, -arepsilon}, & arepsilon \leq arepsilon_{\mathbf{e}}, \end{array}
ight.$$

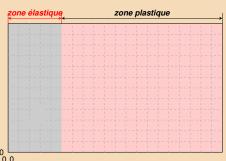


Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**.

$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \le \varepsilon_e, \\ S_0 e^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \ge \varepsilon_e. \end{array} \right.$$

rap. de aurf., $\frac{S}{S_0}$,-

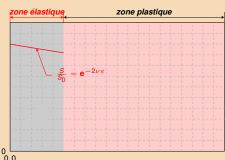


Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**.

$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \le \varepsilon_e, \\ S_0 e^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \ge \varepsilon_e. \end{array} \right.$$

rap. de aurf., $\frac{S}{S_0}$,-

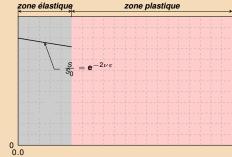


rap. de aurf.,

Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**.

$$\mathcal{S} = \left\{ egin{array}{ll} S_0 \mathbf{e}^{-2
uarepsilon}, & arepsilon \leq arepsilon_{\mathrm{e}}, \ & arepsilon \leq arepsilon_{\mathrm{e}}, \end{array}
ight.$$

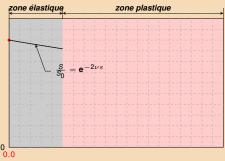


rap. de aurf.,

Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**.

$$S = \left\{ egin{array}{ll} S_0 \mathbf{e}^{-2
uarepsilon}, & arepsilon \leq arepsilon_{\mathbf{e}}, \ S_0 \mathbf{e}^{(1-2
u)arepsilon_{\mathbf{e}}, -arepsilon}, & arepsilon \leq arepsilon_{\mathbf{e}}, \end{array}
ight.$$

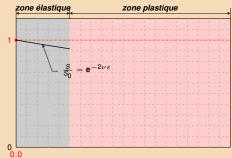


rap. de aurf.,

Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**.

$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ S_0 e^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$

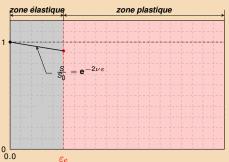


rap. de aurf.,

Lois de Poisson et de Considère

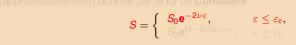
 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**.

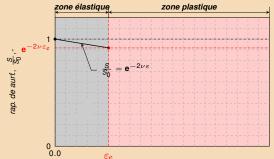
$$S = \left\{ egin{array}{ll} S_0 \mathbf{e}^{-2
uarepsilon}, & arepsilon \leq arepsilon_{\mathbf{e}}, \ & arepsilon \leq arepsilon_{\mathbf{e}}, \end{array}
ight.$$



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de Poisson.

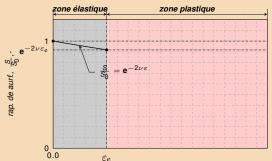




Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de Poisson.

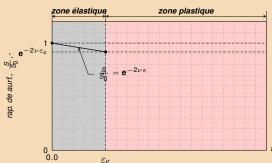
$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ S_0 \mathbf{e}^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**. Dans la zone de plasticité elle est (approximativement) donnée par la loi de **Considère** :

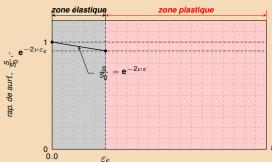
$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ S_0 \mathbf{e}^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**. Dans la zone de plasticité elle est (approximativement) donnée par la loi de **Considère** :

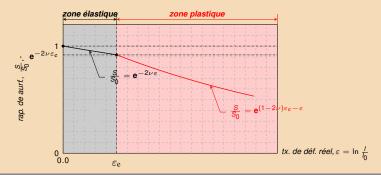
$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ S_0 \mathbf{e}^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**. Dans la zone de plasticité elle est (approximativement) donnée par la loi de **Considère** :

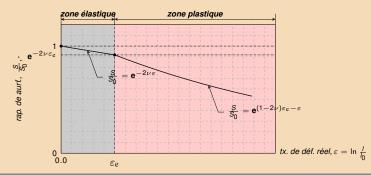
$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ S_0 \mathbf{e}^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**. Dans la zone de plasticité elle est (approximativement) donnée par la loi de **Considère** :

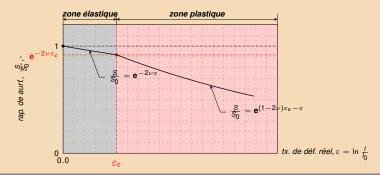
$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ S_0 \mathbf{e}^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**. Dans la zone de plasticité elle est (approximativement) donnée par la loi de **Considère** :

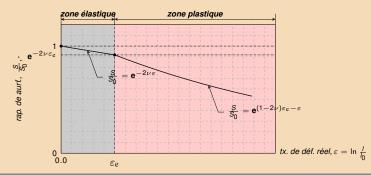
$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ S_0 \mathbf{e}^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**. Dans la zone de plasticité elle est (approximativement) donnée par la loi de **Considère** :

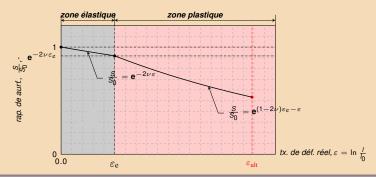
$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ S_0 \mathbf{e}^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**. Dans la zone de plasticité elle est (approximativement) donnée par la loi de **Considère** :

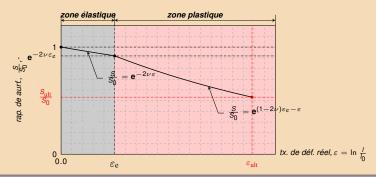
$$\mathcal{S} = \left\{ \begin{array}{ll} \mathcal{S}_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ \mathcal{S}_0 \mathbf{e}^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$



Lois de Poisson et de Considère

 Dans la zone de reversibilité, le rapport entre la surface S de l'échantillon sous traction et sa suface initale S₀ est donné par la loi de **Poisson**. Dans la zone de plasticité elle est (approximativement) donnée par la loi de **Considère** :

$$S = \left\{ \begin{array}{ll} S_0 \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_e, \\ S_0 \mathbf{e}^{(1-2\nu)\varepsilon_e - \varepsilon}, & \varepsilon \geq \varepsilon_e. \end{array} \right.$$

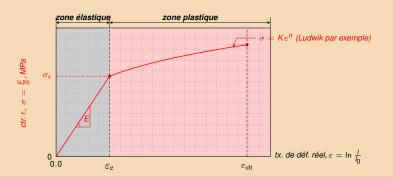


résumé

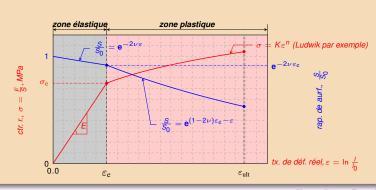
3/6

Courbe de traction réelle et rapport des sections

Si on multiplie la contrainte réelle par le rapport des sections



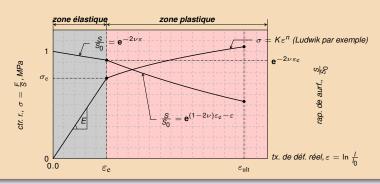
Courbe de traction réelle et rapport des sections



4/6

Courbe de traction réelle et rapport des sections

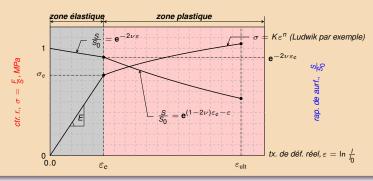
Si on multiplie la contrainte réelle par le rapport des sections, on obti



Courbe de traction réelle et rapport des sections

Si on multiplie la contrainte réelle par le rapport des sections, on obtient

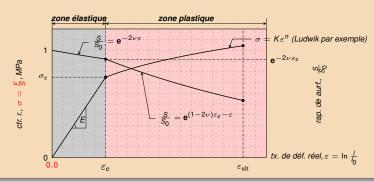
$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0}$$



Courbe de traction réelle et rapport des sections

Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport des

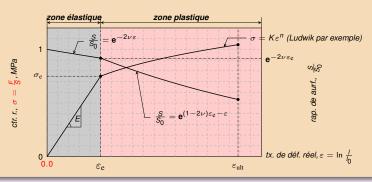
$$R = \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0}$$



Courbe de traction réelle et rapport des sections

• Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de l

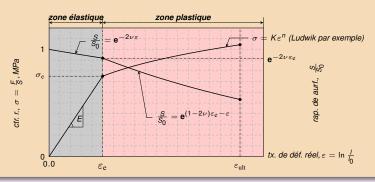
$$-\frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0}$$



Courbe de traction réelle et rapport des sections

• Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de

$$\sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0}$$

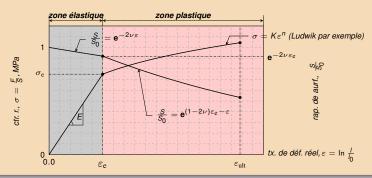


résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0}$$

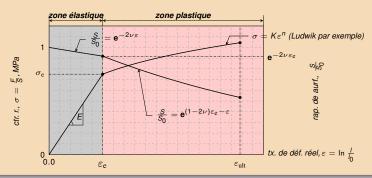


résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le \sigma$$

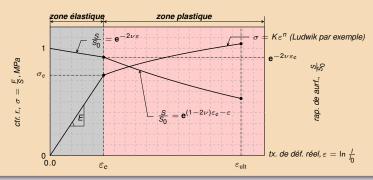


résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le$$

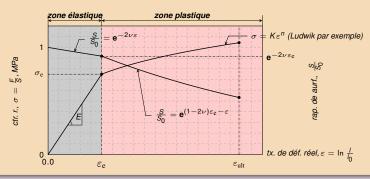


résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0}$$

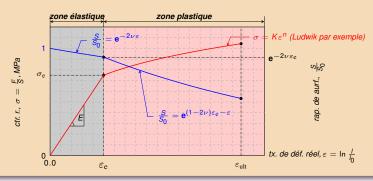


résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le$$



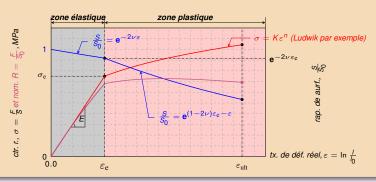
4/6

résumé 8 novembre 2024

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le$$



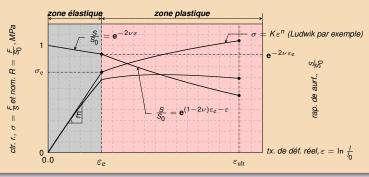
◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 下 少 へ ○

résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

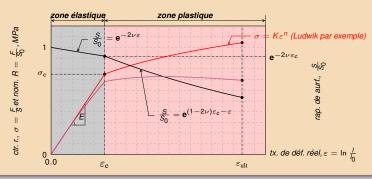
$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0}$$



Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le \sigma$$



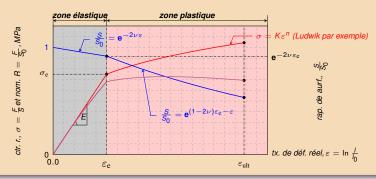
《□》《□》《□》《□》 ● □ り

résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le C$$



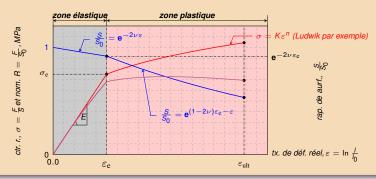
《□》《□》《□》《□》 ● □ り

résumé 8

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le \sigma$$



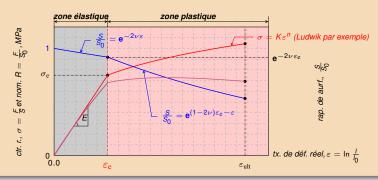
《□》《□》《□》《□》 ● □ り

résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le \sigma$$



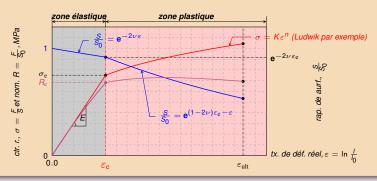
◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 下 少 へ ○

résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le \sigma$$

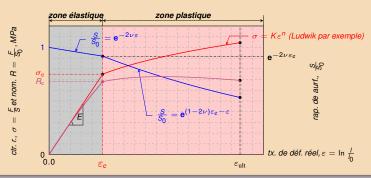


◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 下 少 へ ○

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le \sigma$$



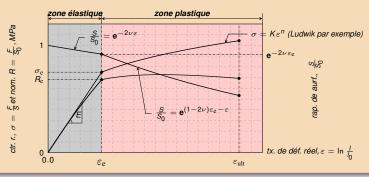
(ロ) (部) (注) (注) 注目 り(C)

résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le \sigma$$



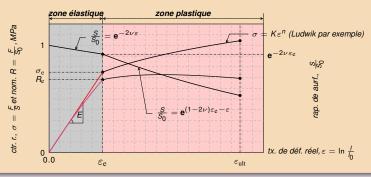
《□ 》 〈□ 》 〈 □ 》 〈 □ 》 浸 □ ど り へ ○

résumé

Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

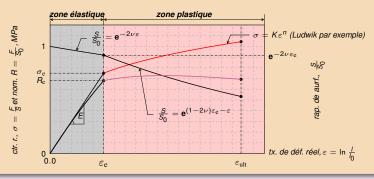
$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le \sigma$$



Courbe de traction réelle et rapport des sections

 Si on multiplie la contrainte réelle par le rapport des sections, on obtient le rapport de la force de traction à la section initiale. On appelle ce rapport contrainte nominale.

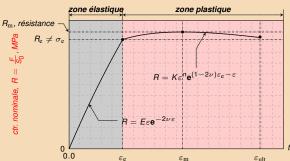
$$R = \sigma \frac{S}{S_0} = \frac{F}{S} \frac{S}{S_0} = \frac{F}{S_0} \le \sigma$$



◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 下 少 へ ○

Représente la contrainte nominale en fct. de la déformation

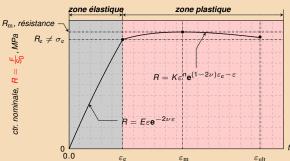
- La contrainte réelle est le rapport entre la force de traction et la section initiale de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique
- Elle passe par un maximum appelé point de résistance.



tx. de déf. réel, $arepsilon=\lnrac{l}{l_0}$

Représente la contrainte nominale en fct. de la déformation

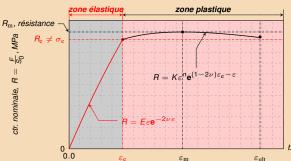
- La contrainte réelle est le rapport entre la force de traction et la **section initiale** de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique
- Elle passe par un maximum appelé point de résistance.



tx. de déf. réel, $arepsilon=\lnrac{l}{l_0}$

Représente la contrainte nominale en fct. de la déformation

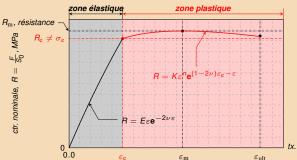
- La contrainte réelle est le rapport entre la force de traction et la section initiale de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique et (en principe) pas croissante jusqu'en rupture.
- Elle passe par un maximum appelé point de résistance.



 $\mathit{tx.}$ de déf. $\mathit{r\'eel}, \varepsilon = \ln \frac{\mathit{l}}{\mathit{l}_0}$

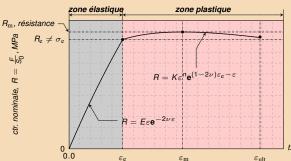
Représente la contrainte nominale en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la **section initiale** de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique et (en principe) pas croissante jusqu'en rupture.
- Elle passe par un maximum appelé point de résistance



Représente la contrainte nominale en fct. de la déformation

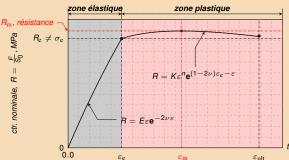
- La contrainte réelle est le rapport entre la force de traction et la section initiale de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique et (en principe) pas croissante jusqu'en rupture.
- Elle passe par un maximum appelé point de résistance.



 $tx.\ de\ def.\ r\'eel, arepsilon = \ln\ rac{l}{l_0}$

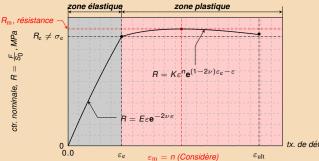
Représente la contrainte nominale en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la section initiale de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique et (en principe) pas croissante jusqu'en rupture.
- Elle passe par un maximum appelé point de résistance.



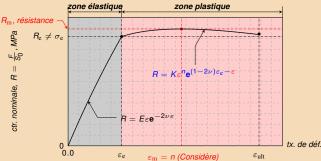
Représente la contrainte nominale en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la section initiale de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique et (en principe) pas croissante jusqu'en rupture.
- Elle passe par un maximum appelé point de résistance.



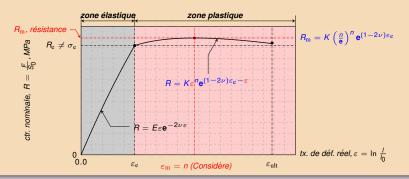
Représente la contrainte nominale en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la section initiale de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique et (en principe) pas croissante jusqu'en rupture.
- Elle passe par un maximum appelé point de résistance.



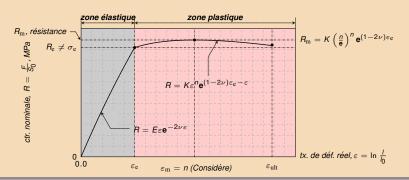
Représente la contrainte nominale en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la **section initiale** de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique et (en principe) pas croissante jusqu'en rupture.
- Elle passe par un maximum appelé point de résistance.



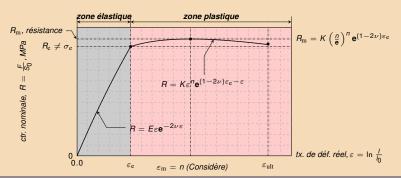
Représente la contrainte nominale en fct. de la déformation

- La contrainte réelle est le rapport entre la force de traction et la section initiale de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique et (en principe) pas croissante jusqu'en rupture.
- Elle passe par un maximum appelé point de résistance.



Représente la contrainte nominale en fct. de la déformation

- · La contrainte réelle est le rapport entre la force de traction et la section initiale de l'échantillon. Elle correspond à une mise à l'échelle de la force de traction.
- La courbe de traction n'est pas linéaire en zone élastique et (en principe) pas croissante jusqu'en rupture.
- Elle passe par un maximum appelé point de résistance.



Les valeurs $arepsilon_{
m m}$ et $R_{
m m}$ aux Tableaux

Fonction de traction (avec l'approximation de Considère)

• Le module d'écrouissage est lié à la résistance. Pour un matériau revenu, on a

$$K = R_m \left(\frac{\mathbf{e}}{n}\right)^n \mathbf{e}^{-(1-2\nu)\varepsilon_e}$$

Pour un matériau revenu, on obtient ainsi une expression simple de la contrainte nominale

$$R = \left\{ \begin{array}{ll} E\varepsilon \mathrm{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_{\mathrm{e}} \\ R_{m} \left(\frac{\varepsilon}{n} \mathrm{e}^{1-\frac{\varepsilon}{n}} \right)^{n}, & \varepsilon \geq \varepsilon_{\mathrm{e}} \end{array} \right.$$

résumé

Fonction de traction (avec l'approximation de Considère)

· Le module d'écrouissage est lié à la résistance. Pour un matériau revenu, on a

$$K = R_m \left(\frac{\mathbf{e}}{n}\right)^n \mathbf{e}^{-(1-2\nu)\varepsilon_e}$$

• Pour un matériau revenu, on obtient ainsi une expression simple de la contrainte nominale

$$R = \left\{ \begin{array}{ll} E\varepsilon \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_{\mathbf{e}} \\ R_m \left(\frac{\varepsilon}{n} \mathbf{e}^{1-\frac{\varepsilon}{n}}\right)^n, & \varepsilon \geq \varepsilon_{\mathbf{e}} \end{array} \right.$$

résumé

Fonction de traction (avec l'approximation de Considère)

· Le module d'écrouissage est lié à la résistance. Pour un matériau revenu, on a

$$K = R_m \left(\frac{\mathbf{e}}{n}\right)^n \mathbf{e}^{-(1-2\nu)\varepsilon_e}$$

• Pour un matériau revenu, on obtient ainsi une expression simple de la contrainte nominale

$$R = \left\{ \begin{array}{ll} E\varepsilon \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_{\mathbf{e}} \\ R_m \left(\frac{\varepsilon}{n} \mathbf{e}^{1-\frac{\varepsilon}{n}}\right)^n, & \varepsilon \geq \varepsilon_{\mathbf{e}} \end{array} \right.$$

Utilisation de la fonction de traction

- La fonction de traction permet de calculer la force de traction F nécessaire à atteindre un taux de déformation ε connu.
- Pour calculer le taux de déformation ε qu'on atteint lorsque la force de traction F est imposée, il faut inverser la fonction de traction.

6/6

résumé 8 novembre 2024

Fonction de traction (avec l'approximation de Considère)

· Le module d'écrouissage est lié à la résistance. Pour un matériau revenu, on a

$$K = R_m \left(\frac{\mathbf{e}}{n}\right)^n \mathbf{e}^{-(1-2\nu)\varepsilon_e}$$

• Pour un matériau revenu, on obtient ainsi une expression simple de la contrainte nominale

$$R = \left\{ \begin{array}{ll} E\varepsilon \mathbf{e}^{-2\nu\varepsilon}, & \varepsilon \leq \varepsilon_{\mathbf{e}} \\ R_m \left(\frac{\varepsilon}{n} \mathbf{e}^{1-\frac{\varepsilon}{n}}\right)^n, & \varepsilon \geq \varepsilon_{\mathbf{e}} \end{array} \right.$$

Utilisation de la fonction de traction

- La fonction de traction permet de calculer la force de traction F nécessaire à atteindre un taux de déformation ε connu.
- Pour calculer le taux de déformation ε qu'on atteint lorsque la force de traction F est imposée, il faut inverser la fonction de traction.

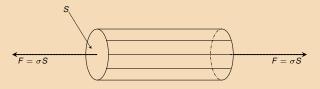
Fonction de traction aux Tabl. Exo 3, Série 2 et Exo 1, Série 3 : manipulation de la fonction de traction

résumé 8 novembre 2024

ANNEXES, TABLES ET BIBLIOGRAPHIE

Réponse de l'échantillon aux efforts externes

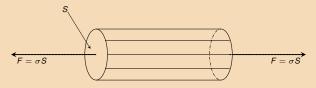
 La contrainte de traction σ ne s'applique pas que sur les faces extrêmes de l'échantillon. L'équilibre mécanique de chaque portion d'échantillon implique que la contrainte σ se répercute sur chaque surface interne de l'échantillon perpendiculaire à l'axe de traction. Ce fait est illustré à la Fig. ci-dessous.



 En cours d'une expérience de traction, l'échantillon est dans un état de contrainte homogène :

Réponse de l'échantillon aux efforts externes

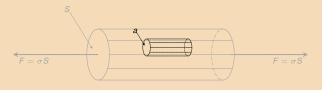
 La contrainte de traction σ ne s'applique pas que sur les faces extrêmes de l'échantillon. L'équilibre mécanique de chaque portion d'échantillon implique que la contrainte σ se répercute sur chaque surface interne de l'échantillon perpendiculaire à l'axe de traction. Ce fait est illustré à la Fig. ci-dessous.



En cours d'une expérience de traction, l'échantillon est dans un état de contrainte homogène :

Réponse de l'échantillon aux efforts externes

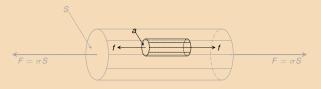
 La contrainte de traction σ ne s'applique pas que sur les faces extrêmes de l'échantillon. L'équilibre mécanique de chaque portion d'échantillon implique que la contrainte σ se répercute sur chaque surface interne de l'échantillon perpendiculaire à l'axe de traction. Ce fait est illustré à la Fig. ci-dessous.



En cours d'une expérience de traction, l'échantillon est dans un état de contrainte homogène :

Réponse de l'échantillon aux efforts externes

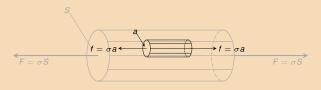
 La contrainte de traction σ ne s'applique pas que sur les faces extrêmes de l'échantillon. L'équilibre mécanique de chaque portion d'échantillon implique que la contrainte σ se répercute sur chaque surface interne de l'échantillon perpendiculaire à l'axe de traction. Ce fait est illustré à la Fig. ci-dessous.



 En cours d'une expérience de traction, l'échantillon est dans un état de contrainte homogène :

Réponse de l'échantillon aux efforts externes

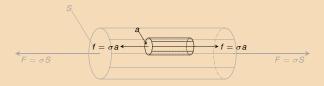
 La contrainte de traction σ ne s'applique pas que sur les faces extrêmes de l'échantillon. L'équilibre mécanique de chaque portion d'échantillon implique que la contrainte σ se répercute sur chaque surface interne de l'échantillon perpendiculaire à l'axe de traction. Ce fait est illustré à la Fig. ci-dessous.



 En cours d'une expérience de traction, l'échantillon est dans un état de contrainte homogène :

Réponse de l'échantillon aux efforts externes

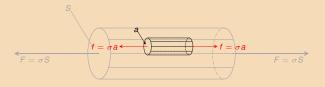
 La contrainte de traction σ ne s'applique pas que sur les faces extrêmes de l'échantillon. L'équilibre mécanique de chaque portion d'échantillon implique que la contrainte σ se répercute sur chaque surface interne de l'échantillon perpendiculaire à l'axe de traction. Ce fait est illustré à la Fig. ci-dessous.



 En cours d'une expérience de traction, l'échantillon est dans un état de contrainte homogène: une traction uniaxiale dont l'amplitude est égale à la contrainte réelle d.

Réponse de l'échantillon aux efforts externes

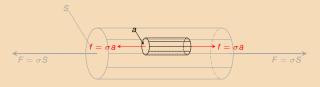
 La contrainte de traction σ ne s'applique pas que sur les faces extrêmes de l'échantillon. L'équilibre mécanique de chaque portion d'échantillon implique que la contrainte σ se répercute sur chaque surface interne de l'échantillon perpendiculaire à l'axe de traction. Ce fait est illustré à la Fig. ci-dessous.



 En cours d'une expérience de traction, l'échantillon est dans un état de contrainte homogène: une traction uniaxiale dont l'amplitude est égale à la contrainte réelle σ. On

Réponse de l'échantillon aux efforts externes

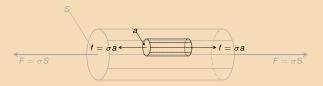
 La contrainte de traction σ ne s'applique pas que sur les faces extrêmes de l'échantillon. L'équilibre mécanique de chaque portion d'échantillon implique que la contrainte σ se répercute sur chaque surface interne de l'échantillon perpendiculaire à l'axe de traction. Ce fait est illustré à la Fig. ci-dessous.



 En cours d'une expérience de traction, l'échantillon est dans un état de contrainte homogène: une traction uniaxiale dont l'amplitude est égale à la contrainte réelle σ. On peut donc mesurer σ à l'aide d'une jauge de contraintes.

Réponse de l'échantillon aux efforts externes

 La contrainte de traction σ ne s'applique pas que sur les faces extrêmes de l'échantillon. L'équilibre mécanique de chaque portion d'échantillon implique que la contrainte σ se répercute sur chaque surface interne de l'échantillon perpendiculaire à l'axe de traction. Ce fait est illustré à la Fig. ci-dessous.



 En cours d'une expérience de traction, l'échantillon est dans un état de contrainte homogène: une traction uniaxiale dont l'amplitude est égale à la contrainte réelle σ. On peut donc mesurer σ à l'aide d'une jauge de contraintes.

