
Infrastructure as Code (IaC)
Terraform

Dr. Assane Wade
Abir Chebbi
2023-2024

Infrastructure as Code (IaC)
● The managing and provisioning of infrastructure through code instead of

through manual processes.
● Uses a high-level descriptive coding language to automate the

provisioning of IT infrastructure.

2Hepia 2023-2024

Infrastructure as Code benefits
● Faster time to production/market
● Improved consistency—less ‘configuration drift’
● Faster, more efficient development
● Protection against churn
● Lower costs and improved ROI

3Hepia 2023-2024

Declarative vs. imperative approach
Declarative approach (or Functional approach) is the optimal method:

 You articulate the ultimate state you want for the infrastructure you are
provisioning, and the Infrastructure as Code (IaC) software takes care of
the remaining tasks. This includes tasks such as initiating the virtual
machine (VM) or container, as well as installing and configuring required
software, resolving interdependencies between system and software
components, and overseeing versioning.

4Hepia 2023-2024

resource "openstack_compute_instance_v2"
"app_server" {
 name = "TF-managed"
 image_id = "cirros"
 flavor_name = "m1.tiny"
 }

Declarative vs. imperative approach
Imperative approach (procedural approach):

 The solution facilitates the creation of automation scripts designed to
provision your infrastructure incrementally, addressing each specific step
individually. Although this approach may involve more management effort as
you scale, it offers the advantage of being more comprehensible for existing
administrative staff. Additionally, it allows for the utilization of configuration
scripts that are already in place, streamlining the integration process.

5Hepia 2023-2024

:

image = nova_client.images.find(name="cirros")
flavor = nova_client.flavors.find(name="m1.tiny")
instance = nova_client.servers.create(name="vm2",
image=image, flavor=flavor,...)

Infrastructure as Code (IaC) Tools

6Hepia 2023-2024

Terraform
● HashiCorp Terraform is a tool for infrastructure as code, allowing users

to define and provision resources using human-readable configuration
files.

● It works with both cloud and on-premises resources, handling low-level
components like compute and storage, as well as higher-level features
such as DNS entries and SaaS functionalities.

7Hepia 2023-2024

Terraform Characteristics
● Declarative configuration language
● Provider-agnostic support for various cloud providers
● Resource graph for dependency management
● Execution plans for change preview
● State management
● Modules for code reuse
● Integration capabilities with CI/CD pipelines

8Hepia 2023-2024

Terraform Basic Components

9Hepia 2023-2024

Terraform Providers
● Terraform Registry
● Amazon Web Services (AWS), Azure, Google Cloud Platform (GCP),

Kubernetes, Helm, GitHub, Splunk, DataDog, and many more.

10Hepia 2023-2024

Terraform Stages
● Write: You define resources, which

may be across multiple cloud
providers and services.

● Plan: Terraform creates an
execution plan describing the
infrastructure it will create, update,
or destroy based on the existing
infrastructure and your
configuration.

● Apply: On approval, Terraform
performs the proposed operations
in the correct order, respecting any
resource dependencies.

11Hepia 2023-2024

Terraform’s Language
● Terraform's language is its primary user interface.

● Configuration files you write in Terraform language tell Terraform what
plugins to install, what infrastructure to create, and what data to fetch.

● Terraform language also lets you define dependencies between resources
and create multiple similar resources from a single configuration block.

12Hepia 2023-2024

Terraform Files and Directories
● Code in the Terraform language is stored in plain text files with the .tf file

extension.

● JSON-based variant of the language with the .tf.json file extension.

● Files containing Terraform code are called configuration files

● Configuration files must always use UTF-8 encoding

13Hepia 2023-2024

Directories and Modules
● A module is a collection of .tf and/or .tf.json files kept together in a

directory.
● Nested directories are treated as completely separate modules

14Hepia 2023-2024

Override Files
● Terraform normally loads all of the .tf and .tf.json files within a directory

and expects each one to define a distinct set of configuration objects. If
two files attempt to define the same object, Terraform returns an error.

● Exception: Terraform has special handling of any configuration file whose
name ends in _override.tf or _override.tf.json. This special handling also
applies to a file named literally override.tf or override.tf.json.

15Hepia 2023-2024

Terraform Syntax
● Configuration Syntax : describes the native grammar of the Terraform

language.

● JSON Configuration Syntax : documents how to represent Terraform
language constructs in the pure JSON variant of the Terraform language.

● Style Conventions : documents some commonly accepted formatting
guidelines for Terraform code. These conventions can be enforced
automatically with terraform fmt.

16Hepia 2023-2024

https://developer.hashicorp.com/terraform/cli/commands/fmt

Terraform Syntax
● Blocks are containers for other content and

usually represent the configuration of some
kind of object, like a resource.

● Arguments assign a value to a name. They
appear within blocks.

● Expressions represent a value, either literally
or by referencing and combining other
values. They appear as values for arguments,
or within other expressions.

17Hepia 2023-2024

Blocks
● A block is a container for other content

● A block has a type (resource in this example). Each block type defines how many labels must follow the
type keyword. The resource block type expects two labels, which are aws_instance and example in the
example above.

● A particular block type may have any number of required labels, or it may require none as with the nested
network_interface block type.

18Hepia 2023-2024

Resource Syntax
● A "resource" block declares a resource of a specific type with a specific

local name. The name is used to refer to this resource in the same
Terraform module but has no meaning outside that module's scope.

● The resource type ("aws_instance") and name ("example") together must
be unique within a module because they serve as an identifier for a given
resource.

● The arguments often depend on the resource type

 Eg: "aws_instance” has arguments including: ami, instance_type

19Hepia 2023-2024

Arguments

● An argument assigns a value to a particular name

 Eg: image_id = "abc1w3”

● The identifier before the equals sign is the argument name, and the
expression after the equals sign is the argument's value.

20Hepia 2023-2024

Comments
● # begins a single-line comment, ending at the end of the line.
● // also begins a single-line comment, as an alternative to #.
● /* and */ are start and end delimiters for a comment that might span over

multiple lines.

21Hepia 2023-2024

Meta-Arguments
The Terraform language defines the following meta-arguments, which can be
used with any resource type to change the behavior of resources:

● depends_on
● count
● for_each
● lifecycle
● provisioner

22Hepia 2023-2024

Data Sources

● Data sources allow Terraform to use
information defined outside of Terraform,
defined by another separate Terraform
configuration, or modified by functions.

● Each provider may offer data sources
alongside its set of resource types.

23Hepia 2023-2024

Variables and Outputs
● Input Variables serve as parameters for a Terraform module, so users can

customize behavior without editing the source.
● Output Values are like return values for a Terraform module.
● Local Values are a convenience feature for assigning a short name to an

expression.

24Hepia 2023-2024

Input variables
● Input variables let you customize aspects of Terraform modules without

altering the module's own source code.
● This functionality allows you to share modules across different Terraform

configurations, making your module composable and reusable.
● When you declare variables in the root module of your configuration, you

can set their values using CLI options and environment variables
● When you declare them in child modules, the calling module should pass

values in the module block.
● Input variables are like function arguments.

25Hepia 2023-2024

https://developer.hashicorp.com/terraform/language/modules

Variable declaration
● The Name must be unique among all variables

in the same module. This name is used to assign
a value to the variable from outside and to
reference the variable's value from within the
module.

● Name of a variable can be any valid identifier
except the following: source, version, providers,
count, for_each, lifecycle, depends_on, locals.

26Hepia 2023-2024

https://developer.hashicorp.com/terraform/language/syntax/configuration

Variables Arguments

● Default : A default value which then makes the variable optional.
● Type: This argument specifies what value types are accepted for the

variable.
● Description: This specifies the input variable's documentation.
● Validation: A block to define validation rules, usually in addition to type

constraints.
● Sensitive: Limits Terraform UI output when the variable is used in

configuration.
● Nullable: Specify if the variable can be null within the module.

27Hepia 2023-2024

Variables Arguments - Type Constraints
Type keywords:

● String
● Number
● Bool

The type constructors allow you to specify complex types such as collections:

● list(<TYPE>)
● set(<TYPE>)
● map(<TYPE>)
● object({<ATTR NAME> = <TYPE>, ... })
● tuple([<TYPE>, ...])

28Hepia 2023-2024

Assigning Values to Root Module Variables
When variables are declared in the root module of your configuration, they
can be set in a number of ways:
● In a Terraform Cloud workspace.
● Individually, with the -var command line option.

29Hepia 2023-2024

Assigning Values to Root Module Variables

● In variable definitions (.tfvars) files, either specified on the command
line or automatically loaded.

● As environment variables.

30Hepia 2023-2024

Output Values

Output values make information about your infrastructure available on the
command line, and can expose information for other Terraform
configurations to use. Output values are similar to return values in
programming languages.

31Hepia 2023-2024

Output Values - Usage
● A child module can use outputs to expose a subset of its resource

attributes to a parent module.
● A root module can use outputs to print certain values in the CLI output

after running terraform apply.
● When using remote state, root module outputs can be accessed by other

configurations via a terraform_remote_state data source.

32Hepia 2023-2024

https://developer.hashicorp.com/terraform/language/state/remote

Terraform Commands - Init

33Hepia 2023-2024

Terraform Commands - Plan

34Hepia 2023-2024

Terraform Commands - Apply

35Hepia 2023-2024

36

