
Kubernetes

Dr. Assane Wade
Francisco Mendonca

Container cluster management

• Container management refers to a set of practices that govern
and maintain containerization software.

• Container management tools automate the creation,
deployment, destruction and scaling of application or systems
containers.

2

Container cluster management

• Need to create containers and connect them between each
other.

• Putting all containers on a single host is not robust: when the
host fails all containers fail.

• Deploy on many hosts with communication between the
containers.

• Deploy a new version without service interruption.
• Continuous integration

• Take a host down for maintenance without service interruption.
• Be sure that containers are healthy at all times
• Need to monitor containers for good health and relaunch if

failing: container failure management

3

Container cluster management

• The placement of application containers on cluster nodes is called scheduling
• Containers have different resource requirements (CPU, memory, disk, …)
• Containers that cooperate tightly need to be placed on the same node

(affinity)
• Containers of an app that uses redundancy need to be placed on different

nodes (anti-affinity)
• Goals:
• Increase cluster utilization
• Still meet the application constraints

4

Kubernetes - Introduction

• Platform for automating deployment, scaling and
management of containerized applications.

• Initially written and designed by Google
• First announced (open-sourced by Google) 2014-09
• Kubernetes v. 1.0 released 2015-07-21
• At the same time Google and the Linux Foundation

create the Cloud Native Computing Foundation
(CNCF) and transfer Kubernetes to it

• Borrows heavily from Google’s long experience with
managing containers, namely Google’s Borg System

• Adopted by RedHat for OpenShift, CoreOs for Tectonic,
Rancher labs for Rancher, …

• Available in public clouds: Google Container Engine,
Rackspace, Azure, OpenShift, Bluemix, OpenStack, etc.

5

Kubernetes (κυβερνήτης): Greek
for "helmsman" or "pilot",
pronounced 'koo-ber-nay'-tace'

Kubernetes - Main concepts

• Cluster — Set of machines (physical or virtual) where pods are
deployed, managed and scaled.

• Pod — A pod consists of one or more containers that are
guaranteed to be co-located on the same machine.

• Controller — A controller is a reconciliation loop that drives
actual cluster state toward the desired cluster state.

• Replication Controller — Handles replication and scaling by
running a specified number of copies of a pod across the
cluster.

• Service — Set of pods that work together, such as one tier of a
multi-tier application. Kubernetes provides:
• Label — The user can assign key-value pairs (called labels) to any

API object in the system (e.g., pods, nodes).
• Label selector — A query against a label that returns matching

objects.

6

Kubernetes - Main concepts

• A cluster is a set of nodes (physical or virtual machines) running
Kubernetes agents, managed by the control plane. Kubernetes
v1.28 supports clusters with up to 5,000 nodes. More
specifically, Kubernetes is designed to accommodate
configurations that meet all of the following criteria:

• No more than 110 pods per node
• No more than 5,000 nodes
• No more than 150,000 total pods
• No more than 300,000 total containers

7

Kubernetes - Anatomy of a cluster

8
Source: Wikipedia

etcd (Cluster Data Store)
provides a REST API for CRUD
(Create Read Update Delete)
operations

Kubernetes - Anatomy of a cluster

9

• Components in the Master node (aka Control Plane)
• etcd — Key/value store keeping the configuration data of the cluster, representing

the overall state of the cluster at any given point of time.
• API Server — Serves the K8s API using JSON/HTTP (external and internal).
• Scheduler — Selects which node an unscheduled pod should run on, based on

resource availability.
• Controller Manager — a process that runs core Kubernetes controllers. The

controllers communicate with the API server to create, update, and delete the
resources they manage (pods, service endpoints, etc.).

Kubernetes - Anatomy of a cluster

10

Components in the Worker nodes aka Kubernetes nodes, Minions
• Kubelet — Responsible for the running state of each node, i.e. ensuring that all

containers on the node are healthy. The kubelet takes a set of PodSpecs that are
provided through various mechanisms and ensures that the containers described in
those PodSpecs are running and healthy. The kubelet doesn’t manage containers
which were not created by Kubernetes.

• Kube-proxy — A network proxy and load balancer. Responsible for routing traffic to
the appropriate container based on IP and port number of the incoming request.

• cAdvisor — Agent that monitors and gathers resource usage and performance
metrics of the containers.

• Overlay network — Responsible to connect containers on different nodes on a flat
network. Not part of K8s, pluggable.

Kubernetes - Pods

• The atomic unit of deployment in
Kubernetes is the Pod.

• A Pod contains one or more containers.
The common case is a single container.

• If a Pod has multiple containers
• Kubernetes guarantees that they are

scheduled on the same cluster node.
• The containers share the same Pod

environment
• IPC namespace, shared memory,

storage volumes, network stack,
etc.

• IP address
• If containers need to talk to each other

within the Pod, they can simply use
the localhost interface.

11

Kubernetes - Pods

• Pod deployment atomicity
• Pods are the minimum unit of scaling.
• The deployment of Pod is all or nothing:

Either the entire Pod comes up and gets
put into service, or it doesn’t and fails.

• Pod lifecycle
• When a Pod dies (e.g., a container of the

Pod crashes or the cluster node
containing the Pod crashes) one does not
bother to bring it back to life.
• Instead Kubernetes starts another one

in its place (new Pod ID and IP
address).

• In the pets vs. cattle model, Pods are
treated as cattle.

13

Kubernetes - Common concepts

• Kubernetes adopts a consistent object
API

• Every Kubernetes object has three
basic fields in its description: Object
Metadata, Specification (or Spec), and
Status (once it has been created).

• The Object Metadata is the same for
all objects in the system
• it contains information such as the

object's name, UID (unique
identifier), an object version number,
and labels (key-value pair).

• Spec is used to describe the desired
state of the object. It is a read-only
information about the current state of
the object

14

apiVersion: v1
kind: Pod
metadata:
name: redis
labels:
component: redis
app: todo

resourceVersion: "439780"
uid: 145f56fd-ad1b-11e7-9[…]

spec:
containers:
- name: redis
image: redis
ports:
- containerPort: 6379
resources:
limits:
cpu: 100m

args:
- redis-server
- --requirepass ccp2
- --appendonly yes

status:
hostIP: 172.20.52.100
phase: Running
podIP: 100.96.3.9
qosClass: Burstable
startTime: 2017-10-09T17:55:47Z

Sp
ec

ifi
ed

 b
y

th
e

us
er

Pr
ov

id
ed

 b
y

ku
be

rn
et

es

Kubernetes – Yaml Definition of Pod

15

apiVersion: v1
kind: Pod
metadata:
name: www

spec:
containers:
- name: nginx
image: nginx
volumeMounts:
- mountPath: /srv/www
name: www-data
readOnly: true

- name: git-monitor
image: kubernetes/git-monitor
env:
- name: GIT_REPO
value: http://github.com/some/repo.git

volumeMounts:
- mountPath: /data
name: www-data

volumes:
- name: www-data
emptyDir: {} Volume name and type

Internal name of the container
in the Pod

Container image name

Environment variable name
and value for the container
(docker run -e GIT_REPO=...
...)

Name of Pod

Kubernetes - Manifest files
• Manifest files.

• kubectl create -f file.yaml
• File format JSON, which can also be written

as YAML
• kind: a string that identifies the schema this

object should have
• apiVersion: a string that identifies the version

of the schema the object should have
• metadata: metadata associated with object

• name: uniquely identifies this object within
the current namespace

• labels: a map of string keys and values that
can be used to organize and categorize
objects

• spec: specification of object’s desired
state

16

Manifest for a Pod
apiVersion: v1
kind: Pod
metadata:
name: redis
labels:
component: redis
app: todo

spec:
containers:
- name: redis
image: redis
ports:
- containerPort: 6379
resources:
limits:
cpu: 100m

args:
- redis-server
- --requirepass ccp2
- --appendonly yes

Pod usage examples

• Create a Pod declaratively
• kubectl create -f pod-nginx.yaml

• List all Pods
• kubectl get pods

• Delete Pod by name
• kubectl delete pod nginx

18

Kubernetes - Service

• When replacing, scaling or upgrading Pods services
receive new IP addresses every time.
• Suppose a two-tier app with a front-end Pods

talking to back-end Pods. The front-end Pods
cannot rely on the IP addresses of the back-end
Pods.

• Services provide a reliable networking endpoint for a
set of Pods.

19

Kubernetes - Service definition

• Service Type can be:
• ClusterIP: use a cluster-internal IP only - this is the default. Choosing this value

means that you want this service to be reachable only from inside of the cluster.
• NodePort: on top of having a cluster-internal IP, expose the service on a port on

each node of the cluster (the same port on each node). You’ll be able to contact the
service on any <NodeIP>:NodePort address.

• LoadBalancer: on top of having a cluster-internal IP and exposing service on a
NodePort also, ask the cloud provider for a load balancer which forwards to the
Service exposed as a <NodeIP>:NodePort for each Node.

• ExternalName : Maps the Service to the contents of the externalName field (for
example, to the hostname api.foo.bar.example). The mapping configures your
cluster's DNS server to return a CNAME record with that external hostname value. No
proxying of any kind is set up.

20

Ingress

25

Ingress exposes HTTP and HTTPS routes from outside the
cluster to services within the cluster. Traffic routing is controlled
by rules defined on the Ingress resource.

An Ingress does not expose arbitrary ports or protocols. Exposing
services other than HTTP and HTTPS to the internet typically
uses a service of
type Service.Type=NodePort or Service.Type=LoadBalancer.

Kubernetes - Connecting Pods to a Service via Labels

• Labels are key-value pairs attached to a Kubernetes object. (Ex.
"environment" : "dev", "environment" : "qa", "environment" : "production”)
• Key and value can be freely chosen.
• An object may have several labels. The same label may be attached to several

objects.
• When defining the Service one specifies a Label Selector which is a set of

conditions on the label key-values.
• Pods matched by the Label Selector are connected to the Service.

26

Kubernetes - Deployments

• Deployments add
features and functionality
used to enable updating
the deployed software
without interrupting the
service.
• Rolling updates
• Rollbacks

• Deployments make use of
Replica Sets
• A Deployment may have

several Replica Sets
active at the same time
when performing
updates or rollbacks.

28

Kubernetes - Deployments

• Deployments work according to the principle of Desired State
Configuration.
• The user describes the desired state in a Deployment

object.
• The Deployment Controller compares the desired state to

the actual state.
• The Deployment Controller changes the actual state

towards the desired state at a controlled rate.
• When the deployment of a new version fails it is very

simple to rollback to a previous working version.

29

Kubernetes - Deployments

• In a rolling update the service is never
interrupted.

• To trigger a rolling update the user simply
updates the desired state of the deployment.
• For example specify a different version of the

Pod image.
• The Deployment creates a new

ReplicaSet.
• The Deployment Controller creates a new

Pod in the new ReplicaSet, and when
successful terminates a Pod in the old
ReplicaSet.

• This is repeated until no old Pods are left.

30

Deployment usage examples

• View deployment:
• kubectl get deployments

• Output:

• Check rollout status:
• kubectl rollout status deployment/nginx-deployment

• Update by setting a new image version:
• kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1

• Update by editing the deployment definition in an editor:
• kubectl edit deployment/nginx-deployment

32

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
nginx-deployment 3 0 0 0 1s

Number of total replicas running
Number of updated replicas
running (latest spec)

Number of replicas
available to users

ConfigMaps and Secrets

● Both are used to propagate environmental variables through
the cluster

● ConfigMaps are used for:
○ Non-Confidential Environmental Variables (No Passwords

or API Keys)
○ Command-line arguments
○ Configuration files in volumes

● ConfigMaps are meant to be dynamic

33

ConfigMaps and Secrets

● Secrets are used to propagate confidential data through the
cluster
○ Passwords
○ API Keys
○ …

● Secretes are also Key/Value pairs
● Values are stored in base64

34

ConfigMaps - Code

apiVersion: v1

kind: ConfigMap

metadata:

name: api-pod-config

data:

redis_endpoint: redis-svc

redis_pwd: ccp2

env:

- name: REDIS_ENDPOINT

valueFrom:

configMapKeyRef:

name: api-pod-config

key: redis_endpoint

- name: REDIS_PWD

valueFrom:

configMapKeyRef:

name: api-pod-config

key: redis_pwd

env:

- name: REDIS_ENDPOINT

value: redis-svc

- name: REDIS_PWD

value: ccp2

Pod File with ConfigMaps Original Pod File

35

Secrets - Code

apiVersion: v1

kind: Secret

metadata:

name: api-secret

type: Opaque

data:

redis_endpoint:
cmVkaXMtc3ZjCg==

redis_pwd: Y2NwMg==

env:

- name: REDIS_ENDPOINT

valueFrom:

secretMapKeyRef:

name: api-pod-config

key: redis_endpoint

- name: REDIS_PWD

valueFrom:

secretMapKeyRef:

name: api-pod-config

key: redis_pwd

env:

- name: REDIS_ENDPOINT

value: redis-svc

- name: REDIS_PWD

value: ccp2

Pod File with Secrets Original Pod File

36

References

● https://kubernetes.io/docs/concepts/configuration/secret/
● https://kubernetes.io/docs/concepts/configuration/configmap/

37

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/configmap/

